Computational Assessment of Microrotation and Buoyancy Effects on the Stagnation Point Flow of Carreau-Yasuda Hybrid Nanofluid with Chemical Reaction Past a Convectively Heated Riga Plate.

ACS Omega

KMUTT Fixed Point Research Laboratory, Room SCL 802 Fixed Point Laboratory, Science Laboratory Building, Department of Mathematics, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, 10140, Thailand.

Published: August 2022

The present framework deliberated the mixed convection stagnation point flow of a micropolar Carreau-Yasuda hybrid nanoliquid through the influence of the Darcy-Forchheimer parameter in porous media toward a convectively heated Riga plate. In this investigation, blood is used as a base liquid and gold (Au) and copper (Cu) are the nanoparticles. The main novelty of the present investigation is to discuss the transmission of heat through the application of thermal radiation, viscous dissipation, and the heat source/sink on the flow of a micropolar Carreau-Yasuda hybrid nanoliquid. Further, the results of the chemical reaction are utilized for the computation of mass transport. Brownian motion and thermophoretic phenomena are discussed in the current investigation. The current problem is evaluated by using the connective and partial slip conditions and is formulated on the basis of the higher-order nonlinear PDEs which are converted into highly nonlinear ODEs by exploiting the similarity replacement. In the methodology section, the homotopic analysis scheme is employed on these resulting ODEs for the analytical solution. In the discussion section, the results of the different flow parameters on the velocity, microrotation, energy, and mass of the hybrid nanofluid are computed against various flow parameters in a graphical form. Some of the main conclusions related to the present investigation are that the velocity profile is lowered but the temperature is augmented for both nanoparticles volume fractions. It is notable that the skin friction coefficient is reduced due to the higher values of the Darcy-Forchheimer parameter. Further, the rising performance of the hybrid nanofluid Nusselt number is determined by the radiation parameter.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9434772PMC
http://dx.doi.org/10.1021/acsomega.2c03570DOI Listing

Publication Analysis

Top Keywords

carreau-yasuda hybrid
12
hybrid nanofluid
12
stagnation point
8
point flow
8
chemical reaction
8
convectively heated
8
heated riga
8
riga plate
8
flow micropolar
8
micropolar carreau-yasuda
8

Similar Publications

The cerebrovascular blood vessels feed necessary agents such as oxygen, glucose, and so forth. to the brain which maintains the smooth functioning of the human body. However, the blood-brain barrier as a vascular border restricts the entry of drugs that can be necessary for the treatment of neurological disorders.

View Article and Find Full Text PDF

The current study aims to assess the augmentation of energy transmission in the presence of magnetic dipole through trihybrid Carreau Yasuda nanofluid flow across a vertical sheet. The rheological properties and thermal conductivity of the based fluids are improved by framing an accurate combination of nanoparticles (NPs). The trihybrid nanofluid (Thnf) has been synthesized by the addition of ternary nanocomposites (MWCNTs, Zn, Cu) to the ethylene glycol.

View Article and Find Full Text PDF

The aim of the current analysis is to evaluate the significances of magnetic dipole and heat transmission through ternary hybrid Carreau Yasuda nanoliquid flow across a vertical stretching sheet. The ternary compositions of AlO, SiO, and TiO nanoparticles (nps) in the Carreau Yasuda fluid are used to prepare the ternary hybrid nanofluid (Thnf). The heat transfer and velocity are observed in context of heat source/sink and Darcy Forchhemier effect.

View Article and Find Full Text PDF

The utilization of Fourier's law of heat conduction provides the parabolic partial differential equation of thermal transport, which provides the information regarding thermal transport for the initial time, but during many practical applications, this theory is not applicable. Therefore, the utilization of modified heat flux model is to be used. This work discusses the utilization of non-Fourier heat flux model to investigate thermal performance of tri-hybrid nanoparticles mixture immersed in Carreau Yasuda material past over a Riga plate by using Hamilton Crosser and Yamada Ota models considering the variable thermos-physical characteristics.

View Article and Find Full Text PDF

The purpose of this study is to evaluate the augmentation of thermal energy transfer in trihybrid Ellis nanofluid flow in the occurrence of magnetic dipole passes over a vertical surface. The ternary hybrid nanofluid is prepared by the dispersion of ternary nanoparticles (AlO, SiO, and TiO) in the Carreau Yasuda fluid. The velocity and heat transportation has been examined in the existence of the Darcy Forchhemier influence and heat source/sink.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!