To assess contribution of the radicals formed from biomass burning, our recent findings toward the formation of resonantly stabilized persistent radicals from hydrolytic lignin pyrolysis in a metal-free environment are presented in detail. Such radicals have particularly been identified during fast pyrolysis of lignin dispersed into the gas phase in a flow reactor. The trapped radicals were analyzed by X-band electron paramagnetic resonance (EPR) and high-frequency (HF) EPR spectroscopy. To conceptualize available data, the metal-free biogenic bulky stable radicals with extended conjugated backbones are suggested to categorize as a new type of metal-free environmentally persistent free radicals (EPFRs) (bio-EPFRs). They can be originated not only from lignin/biomass pyrolysis but also during various thermal processes in combustion reactors and media, including tobacco smoke, anthropogenic sources and wildfires (forest/bushfires), and so on. The persistency of bio-EPFRs from lignin gas-phase pyrolysis was outlined with the evaluated lifetime of two groups of radicals being 33 and 143 h, respectively. The experimental results from pyrolysis of coniferyl alcohol as a model compound of lignin in the same fast flow reactor, along with our detailed potential energy surface analyses using high-level DFT and ab initio methods toward decomposition of a few other model compounds reported earlier, provide a mechanistic view on the formation of C- and O-centered radicals during lignin pyrolysis. The preliminary measurements using HF-EPR spectroscopy also support the existence of O-centered radicals in the radical mixtures from pyrolysis of lignin possessing a high value (2.0048).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9434622PMC
http://dx.doi.org/10.1021/acsomega.2c03381DOI Listing

Publication Analysis

Top Keywords

lignin pyrolysis
12
radicals
10
environmentally persistent
8
persistent free
8
free radicals
8
bio-epfrs lignin
8
pyrolysis
8
pyrolysis lignin
8
flow reactor
8
o-centered radicals
8

Similar Publications

Preparation of chitosan/lignin nanoparticles-based nanocomposite films with high-performance and improved physicochemical properties for food packaging applications.

Int J Biol Macromol

December 2024

Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu-CS 60 319-60 203, Compiègne Cedex, France. Electronic address:

Chitosan (CH)-based composite films have attracted increasing attention as promising green food packaging materials due to their biodegradability and ease of fabrication. Additionally, lignin (LN) has been widely used as additive for chitosan-based films to improve their physicochemical properties. In this study, a series of composite films made of chitosan nanoparticles (NCH) as a matrix and alkali lignin nanoparticles (LNPs) as functional filler were prepared.

View Article and Find Full Text PDF

Behaviors of bio-modified calcium-based sorbents for simultaneous CO/NO removal: Correlation of the characteristics of biomass, modified Ca-sorbent and reactivity.

J Environ Manage

December 2024

Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, PR China.

Article Synopsis
  • Simultaneous removal of CO and NO from flue gas is important for reducing atmospheric pollutants and carbon emissions.
  • An optimized calcium oxide (CaO) system is proposed using bio-modified calcium-based pellets, where biomass pyrolysis enhances efficiency.
  • The study finds that different biomass types impact pellet characteristics, with cellulose improving pellet structure for better CO/NO removal, while lignin increases biochar production, affecting capture performance based on pore structure and biochar content.
View Article and Find Full Text PDF

Herein, choline chloride/oxalic acid (ChCl/OA) and choline chloride/oxalic acid/ethylene glycol (ChCl/OA/EG) pretreatments of oil palm empty fruit bunches (EFB) and mesocarp fibers (MSF) were conducted to achieve protection of the lignin structure, while improving the enzymatic efficiency of the solid residues. Under the operating conditions of 90 °C and 6 h, ChCl/OA/EG demonstrated a higher lignin extraction selectivity and obtained solid residues with higher hemicellulose content compared to ChCl/OA. The digestibility of glucan and xylan in solid residues obtained using ChCl/OA/EG achieved 98.

View Article and Find Full Text PDF

Study on structural alterations and degradation mechanism of lignin from ozone treated scutched flax tow (SFT).

Int J Biol Macromol

December 2024

Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China. Electronic address:

Article Synopsis
  • Ozone is effective in extracting lignocellulosic fibers due to its selectivity for lignin, but the mechanism of lignin degradation during this process is not well understood.
  • Researchers examined the structural changes in milled wood lignin from scutched flax tow before and after ozone treatment using various analytical techniques.
  • The study found that ozone treatment damaged specific lignin linkages and converted S-type lignin units into G-type units, offering important insights into the delignification process in lignocellulosic fiber extraction.
View Article and Find Full Text PDF

To explore the effects of the components in the raw materials and by-products of co-pyrolysis on the physicochemical properties of biochar, rice husk (RH, which has a high percentage of lignin and a low content of N) and sawdust (SD, which has a high percentage of both cellulose and N) were used as typical raw materials to prepare co-pyrolysis biochar. The benzene vapor adsorption performance of the obtained biochar was then tested on a fixed-bed device. At the same time, the by-product components generated during pyrolysis were analyzed using thermogravimetric (TG), scanning electron microscopy (SEM), and gas chromatography-mass spectrometry (GC-MS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!