The accurate determination of water saturation in shaly sandstone reservoirs has a significant impact on hydrocarbons in place estimation and selection of possible hydrocarbon zones. The available numerical equations for water saturation estimation are unreliable and depend on laboratory core analysis. Therefore, this paper attempts to use artificial intelligence methods in developing an artificial neural network model (ANN) for water saturation (Sw) prediction. The ANN model is developed and validated by using 2700 core measured points from the fields located in the Gulf of Suez, Nile Delta, and Western Desert of Egypt, with inputs including the formation depth, the caliper size, the sonic time, gamma rays (GRs), shallow resistivity (Rxo), neutron porosity (NPHI), the photoelectric effect (PEF), bulk density, and deep resistivity (Rt). The study results show that the optimization process for the ANN model is achieved by distributing the collected data as follows: 80% for training and 20% for testing processes, with an of 0.973 and a mean square error (MSE) of 0.048. In addition, a mathematical equation is extracted out of the ANN model that is used to estimate the formation water saturation in a simple and direct approach. The developed equation can be used incorporating with the existing well logs commercial software to increase the accuracy of water saturation prediction. A comparison study is executed using published correlations (Waxman and Smits, dual water, and effective models) to show the robustness of the presented ANN model and the extracted equation. The results show that the proposed correlation and the ANN model achieved outstanding performance and better accuracy than the existing empirical models for calculating the formation water saturation with a high correlation coefficient ( ) of 0.973, lowest mean-square error (MSE) of 0.048, lowest average absolute percent relative error (AAPRE) of 0.042, and standard deviation (SD) of 0.24. To the best of our knowledge, the current study and the proposed ANN model establish a novel base in the estimation of formation water saturation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9435039PMC
http://dx.doi.org/10.1021/acsomega.2c01945DOI Listing

Publication Analysis

Top Keywords

water saturation
32
ann model
24
formation water
12
water
9
saturation
8
saturation shaly
8
shaly sandstone
8
sandstone reservoirs
8
artificial intelligence
8
saturation prediction
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!