Because of the immobility, plants encounter a series of stresses, such as varied nutrient concentrations in soil, which regulate plant growth, development, and phase transitions. Nitrogen (N) is one of the most limiting factors for plants, which was exemplified by the fact that low nitrogen (LN) has a great adverse effect on plant growth and development. In the present study, we explored the potential role of microRNAs (miRNAs) in response to LN stress in . We identified 198 miRNAs using sRNA sequencing, including 155 known and 43 novel miRNAs. Among them, 98 known miRNAs and 31 novel miRNAs were differentially expressed after 0.5 h or 24 h of LN stress. Based on degradome data, 122 differential expressed miRNAs (DEmiRNAs) including 102 known miRNAs and 20 novel miRNAs targeted 203 genes, comprising 321 miRNA-target pairs. A big proportion of target genes were transcription factors and functional proteins, and most of the Gene Ontology terms were enriched in biological processes; moreover, one Kyoto Encyclopedia of Genes and Genomes term "ascorbate and aldarate metabolism" was significantly enriched. The expression patterns of six miRNAs and their corresponding target genes under LN stress were monitored. According to the potential function for targets of DEmiRNAs, a proposed regulatory network mediated by miRNA-target pairs under LN stress in was constructed. Taken together, these findings provide useful information to elucidate miRNA functions and establish a framework for exploring N signaling networks mediated by miRNAs in . It may provide new insights into the genetic engineering of the high use efficiency of N in forestry trees.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9428261 | PMC |
http://dx.doi.org/10.3389/fgene.2022.957505 | DOI Listing |
Cancer Cell Int
December 2024
Department of General Surgery, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, China.
Insulin-like growth factor II mRNA-binding proteins (IGF2BPs), a family of RNA-binding proteins, are pivotal in regulating RNA dynamics, encompassing processes such as localization, metabolism, stability, and translation through the formation of ribonucleoprotein complexes. First identified in 1999 for their affinity to insulin-like growth factor II mRNA, IGF2BPs have been implicated in promoting tumor malignancy behaviors, including proliferation, metastasis, and the maintenance of stemness, which are associated with unfavorable outcomes in various cancers. Additionally, non-coding RNAs (ncRNAs), particularly long non-coding RNAs, circular RNAs, and microRNAs, play critical roles in cancer progression through intricate protein-RNA interactions.
View Article and Find Full Text PDFCurr Rheumatol Rep
December 2024
Department of Medicine, Division of Rheumatology, Queen's University, Kingston, ON, Canada.
Purpose Of Review: The canonical pathogenesis of spondyloarthritis (SpA) involves inflammation driven by HLA-B27, type 3 immunity, and gut microbial dysregulation. This review based on information presented at the SPARTAN meeting highlights studies on the pathogenesis of SpA from the past year, focusing on emerging mechanisms such as the roles of microbe-derived metabolites, microRNAs (miRNAs) and cytokines in plasma exosomes, specific T cell subsets, and neutrophils.
Recent Findings: The induction of arthritis in a preclinical model through microbiota-driven alterations in tryptophan catabolism provides new insights as to how intestinal dysbiosis may activate disease via the gut-joint axis.
Sci Rep
December 2024
Department of Electricity and Energy, Selcuk University, Konya, Turkey.
microRNAs (miRNAs) are non-coding RNA molecules that influence the development and progression of many diseases. Research have documented that miRNAs have a significant role in the prevention, diagnosis, and treatment of complex human diseases. Recently, scientists have devoted extensive resources to attempting to find the connections between miRNAs and diseases.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
December 2024
Department of Applied Chemistry, University of Miyazaki, 1-1 Gakuen Kibanadai-Nishi, Miyazaki, Japan.
Nano-sized vesicles are ubiquitous in vegetables, fruits, and other edible plants. We have successfully prepared nanovesicles (NVs) from over 150 edible plants. These results suggest that the daily intake of NVs from various foods and their roles in food function are promising novel approaches for explaining the health-promoting properties of edible plants.
View Article and Find Full Text PDFComp Biochem Physiol Part D Genomics Proteomics
December 2024
Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Science, Southwest University, Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Chongqing 400715, PR China. Electronic address:
Myostatin (Mstn) negatively regulates muscle growth and Mstn deficiency induced "double-skeletal muscle" development in vertebrates, including tilapias. In this study, we performed a transcriptomic analysis of skeletal muscle from both wild-type and mstnb males to investigate the molecular mechanisms underlying skeletal muscle hypertrophy in mstnb mutants. We identified 4697 differentially expressed genes (DEGs), 113 differentially expressed long non-coding RNAs (DE lncRNAs), 211 differentially expressed circular RNAs (DE circRNAs), and 98 differentially expressed microRNAs (DE miRNAs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!