Swine acute diarrhea syndrome coronavirus (SADS-CoV) is an emerging swine enteropathogenic coronavirus that causes severe diarrhea in neonatal piglets, leading to serious economic losses to the pig industries. At present, there are no effective control measures for SADS, making an urgent need to exploit effective antiviral therapies. Here, we confirmed that Aloe extract (Ae) can strongly inhibit SADS-CoV in Vero and IPI-FX cells . Furthermore, we detected that Emodin from Ae had anti-SADS-CoV activity in cells but did not impair SADS-CoV infectivity directly. The time-of-addition assay showed that Emodin inhibits SADS-CoV infection at the whole stages of the viral replication cycle. Notably, we found that Emodin can significantly reduce virus particles attaching to the cell surface and induce TLR3 ( < 0.001), IFN-λ3 ( < 0.01), and ISG15 ( < 0.01) expressions in IPI-FX cells, indicating that the anti-SADS-CoV activity of Emodin might be due to blocking viral attachment and the activation of TLR3-IFN-λ3-ISG15 signaling axis. These results suggest that Emodin has the potential value for the development of anti-SADS-CoV drugs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9433657 | PMC |
http://dx.doi.org/10.3389/fvets.2022.978453 | DOI Listing |
Xenotransplantation
January 2025
Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.
Advancements in xenotransplantation intersecting with modern machine perfusion technology offer promising solutions to patients with liver failure providing a valuable bridge to transplantation and extending graft viability beyond current limitations. Patients facing acute or acute chronic liver failure, post-hepatectomy liver failure, or fulminant hepatic failure often require urgent liver transplants which are severely limited by organ shortage, emphasizing the importance of effective bridging approaches. Machine perfusion is now increasingly used to test and use genetically engineered porcine livers in translational studies, addressing the limitations and costs of non-human primate models.
View Article and Find Full Text PDFMol Ecol
January 2025
Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China.
Rhinolophus bats have been identified as natural reservoirs for viruses with global health implications, including severe acute respiratory syndrome-related coronaviruses (SARSr-CoV) and swine acute diarrhoea syndrome-related coronavirus (SADSr-CoV). In this study, we characterised the individual viromes of 603 bats to systematically investigate the diversity, abundance and geographic distribution of viral communities within R. affinis, R.
View Article and Find Full Text PDFBMC Vet Res
January 2025
Department of Veterinary Clinical Sciences, Clinic for Swine, Justus-Liebig-University, Frankfurter Strasse 112, D-35392, Giessen, Germany.
Background: The recently identified swine inflammation and necrosis syndrome (SINS) affects tail, ears, teats, coronary bands, claws and heels of affected individuals. The primarily endogenous syndrome is based on vasculitis, thrombosis, and intimal proliferation, involving defence cells, interleukins, chemokines, and acute phase proteins and accompanied by alterations in clinical chemistry, metabolome, and liver transcriptome. The complexity of metabolic alterations and the influence of the boar led to hypothesize a polygenic architecture of SINS.
View Article and Find Full Text PDFVet Res
January 2025
Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
Porcine epidemic diarrhoea virus (PEDV) is an enteric pathogen that causes acute diarrhoea, dehydration and high mortality rates in suckling pigs. Tripartite motif 8 (TRIM8) has been shown to play multiple roles in the host's defence against viral infections. However, the functions of TRIM8 in regulating PEDV infection are still not well understood.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
January 2025
Weatherhead P.E.T. Imaging Center, McGovern Medical School at UTHealth, Houston, Texas, USA.
An increasing number of procedures over the past two decades for aortic stenosis (AS) reflects the combination of an aging population and less invasive transcatheter options. As a result, the hemodynamics of the aortic valve (AV) have gained renewed interest to understand its behavior and to optimize patient selection. We studied the hemodynamic relationship between pressure loss (ΔP) and transvalvular flow (Q) of the normal AV as well as the impact of a variable supravalvular stenosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!