Consumption of inorganic Arsenic (iAs) above the safe level may lead to many diseases including cancers of skin. It is known that carcinogenicity of iAs is mediated through generation of excessive reactive oxygen species and polyphenols present in black tea extract (BTE) ameliorate the deleterious effect. Epigenetics also plays vital roles in carcinogenesis. The aim of this paper is to study the influence of iAs on epigenetics and the modulatory effect of BTE. Male Swiss albino mice were divided into three groups, (i) control, (ii) iAs-administered and (iii) iAs + BTE administered. Group (ii) developed invasive squamous cell carcinoma (SCC) of the skin after 330 days, while only hyperplasic and dysplastic changes were observed in group (iii). Expression levels of histone methylation, acetylation marks and several histone methylases, demethylases and acetylases due to iAs were studied; most aberrant expression levels due to iAs were modulated by BTE. JARID1B, a histone demethylase implicated as one of the markers in SCC and a therapeutic target gets upregulated by iAs, but is not influenced by BTE. However, SCC is prevented by BTE. Upregulation of JARID1B by iAs represses H3K4me3; BTE upregulates H3K4me3 without influencing JARID1B expression level. It is known that theaflavin compounds in BTE are transported to the nucleus and interact with histone proteins. in-silico findings in this paper hint that theaflavin compounds present in BTE are very good inhibitors of JARID1B and BTE inhibits its demethylating activity. BTE reverses the epigenetic alterations caused by iAs, thus aids in prevention of SCC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9429555 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2022.e10341 | DOI Listing |
J Mater Sci Mater Med
January 2025
Department of Hand and Foot Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, People's Republic of China.
Diseases and injuries can cause significant bone loss, leading to increased medical expenses, decreased work efficiency, and a decline in quality of life. Bone tissue engineering (BTE) is gaining attention as an alternative to autologous and allogeneic transplantation due to the limited availability of donors. Biomaterials represent a promising strategy for bone regeneration, and their design should consider the three key processes in bone tissue engineering: osteogenesis, bone conduction, and bone induction.
View Article and Find Full Text PDFACS Nano
January 2025
Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium.
The iron-regulated surface determinant protein B (IsdB) has recently been shown to bind to toll-like receptor 4 (TLR4), thereby inducing a strong inflammatory response in innate immune cells. Currently, two unsolved questions are (i) What is the molecular mechanism of the IsdB-TLR4 interaction? and (ii) Does it also play a role in nonimmune systems? Here, we use single-molecule experiments to demonstrate that IsdB binds TLR4 with both weak and extremely strong forces and that the mechanostability of the molecular complex is dramatically increased by physical stress, sustaining forces up to 2000 pN, at a loading rate of 10 pN/s. We also show that TLR4 binding by IsdB mediates time-dependent bacterial adhesion to endothelial cells, pointing to the role of this bond in cell invasion.
View Article and Find Full Text PDFPak J Pharm Sci
January 2025
Department of Food Science and Nutrition, Alkhurmah University College, Taif University, Taif, Saudi Arabia.
The purpose of the current study was to investigate the potential ameliorating murine reproductive effects of herbal tea extracts against bisphenol A-induced (BPA) cytotoxicity. A comparative study was applied among red, green and blue teas in mice groups. Samples were coded as RTE, GTE and BTE groups, respectively.
View Article and Find Full Text PDFFood Chem
January 2025
Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Meat Quality Analysis and Products Development, Ningxia Xihaigu Institute of High-end Cattle Industry, Haiyuan, Ningxia 755299, China. Electronic address:
Multifunctional pH-responsive films were fabricated via layer-by-layer deposition of gelatin, chitosan, and carboxymethyl cellulose (CMC), incorporating selenium nanoparticles (SeNPs) and beetroot extract (BTE), to monitor and preserve beef freshness. SeNPs were synthesized and characterized via various techniques. BTE exhibited promising functional properties, and films demonstrated a significant color transition from red to yellow across pH 2-14.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Interdisciplinary Laboratory for Advanced Materials (LIMAV), Materials Science and Engineering Graduate Program (PPGCM), Federal University of Piauí (UFPI), Teresina, PI, Brazil.
Background: The 3D printing of macro- and mesoporous biomimetic grafts composed of polycaprolactone (PCL) infused with nanosized synthetic smectic clay is a promising innovation in biomaterials for bone tissue engineering (BTE). The main challenge lies in achieving a uniform distribution of nanoceramics across low to high concentrations within the polymer matrix while preserving mechanical properties and biological performance essential for successful osseointegration.
Methods: This study utilized 3D printing to fabricate PCL scaffolds enriched with nanosized synthetic smectic clay (LAP) to evaluate its effects on structural, chemical, thermal, mechanical, and degradative properties, with a focus on in vitro biological performance and non-toxicity.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!