Since the prehistoric era, hematite has been known as a reddish color pigment on rock art, body paint, and decorating substances for objects discovered almost worldwide. Recently, studies about purple hematite used in prehistoric pigment have been done vigorously to investigate the origin of the purple pigment itself. These previous studies indicate that the differentiation of crystallinity, crystal size, morphology, and electronic structure can cause the color shift, resulting in purple hematite. In this study, we conducted a detailed study of the sintering temperature effects on the formation of hematite minerals. This study aims to reveal the structural, crystallography, and electronic transformation in hematite due to heating treatment at various temperatures. The hematite was synthesized using precipitation to imitate the primary method of hematite formation in nature. The sintering process was carried out with temperature variations from 600 °C to 1100 °C and then characterized by crystallographic and structural properties (XRD, Raman Spectroscopy, FTIR), particle size (TEM), as well as electronic properties (DRS, XANES). The crystallinity and particle size of hematite tend to increase along with higher sintering temperatures. Moreover, we noted that the octahedral distortion underwent an intensification with the increase in sintering temperature, which affected the electronic structure of hematite. Specifically, the → transition exhibited lower energy for hematite produced at a higher temperature. This induced a shift in the absorbed energy of the polychromatic light that led to a color shift within hematite, from red to purple. Our finding emphasizes the importance of electronic structure in explaining hematite pigment's color change rather than relying on simple reasons, such as particle size and crystallinity. In addition, this might strengthen the hypothesis that the prehistoric human created a purple hematite pigment through heating.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9433683 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2022.e10377 | DOI Listing |
Sci Rep
January 2025
Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia.
In this study, we report the synthesis of iron oxide nanoparticles (FeONPs) using micro-emulsion-hydrothermal method. By adjusting the synthesis temperature, we successfully produced FeO nanorods and nanospheres. In addition, the 2-octanol, and the surfactant cetyltrimethylammonium bromide served as a solvent in the synthesis process.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Applied Chemistry and Chemical Engineering, Islamic University, Kushtia, Bangladesh.
Hematite (α-FeO) nanoparticles have been synthesized from waste source of iron which contains a prominent amount of iron (93.2 %) and investigated the effect of low temperature calcination. The two-step synthesis method involved preparing ferrous sulfate through acid leaching process followed by oxidation and calcination at temperatures ranging from 200 to 400 °C to produce the desired α-FeO in nano form.
View Article and Find Full Text PDFHeliyon
January 2025
School of Metallurgy & Materials Engineering, Iran University of Science and Technology (IUST), Tehran, Iran.
Metal-organic framework (MOF) derived porous FeO/C powders were applied for absorption of microwaves in the frequency range of 1-18 GHz. The effects of the polyvinylpyrrolidone (PVP) additive on the synthesis of MIL101-(Fe) precursor were studied by various characterization methods. By adding PVP, the impure hematite phase (α-FeO) with magnetite phase (FeO) was disappeared and the particular morphology was transformed to the porous rod-like, leading to the increase of specific surface area from 150 to 282 m/g.
View Article and Find Full Text PDFWaste Manag
December 2024
Department of Mineral Processing, CSIR-IMMT, Bhubaneswar, Odisha 751013, India. Electronic address:
This study employed a lab-scale fluidized bed steam gasification setup to perform the co-gasification experiments with blast furnace dust (BFD) and petcoke (PC) - wastes from the steel and refining industries, respectively. Multiple experiments were conducted at the optimized conditions to decipher the effects of the mineralogical content of the feed samples on the gasification performance parameters. With the addition of iron and zinc-abundant BFD sample to PC, an effective enhancement in the ability of the gasifier to produce hydrogen-rich synthesis gas was observed, attributed to an increase in surface active sites for gasification reactivity.
View Article and Find Full Text PDFPLoS One
December 2024
School of Design, Informatics and Business, Abertay University, Dundee, United Kingdom.
The reuse of electro-coagulated sludge as an adsorbent for Cr(VI) ion reduction was investigated in this study. Electro-coagulated sludge was obtained during the removal of citric acid wastewater by the electrocoagulation process. The following parameters were optimized for Cr(VI) reduction: pH (5-7), initial Cr(VI) concentration (10-50 mg/L), contact time (10-45 min), and adsorbent dosage (0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!