Some natural compounds and their analogues having potent anti- SARS-CoV-2 and anti-proteases activities as lead molecules in drug discovery for COVID-19.

Eur J Med Chem Rep

Office of Laboratory Safety and Environmental Health, Indian Institute of Science, New Chemical Science Building, Bangalore, 560012, India.

Published: December 2022

Currently an emerging human pathogenic coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), caused coronavirus disease 2019 (COVID-19) that has posed a serious threat to public health worldwide. As it is a novel severe pneumonia-type viral disease, no effective therapeutic agents are available to treat this infection to date, emphasizing an urgent need for development of effective anti-SARS-CoV-2 agents. Based on screening in computational biology and biological in vitro assays, a good number of natural compounds and their synthetic analogues have been confirmed to possess target-specific inhibitory effects against the activity of host and viral proteases, namely, cathepsin-L, TMPRSS2, Sec61, Mpro (3CL-protease), RNA-dependent RNA protease (RdRp), helicase cap-binding proteases eEF1A, eIF4A, eIF4E, which play dominant roles in progression of infection and replication of SARS-CoV-2 virus in host cells. This review paper describes the potent antiviral activity and target-specific anti-proteases activity of some natural compounds and their synthetic analogues against SARS-CoV-2 infection. It will inspire the researchers to unleash their own creativity and to design potent and safe drugs to fight the current COVID-19 pandemic.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9420082PMC
http://dx.doi.org/10.1016/j.ejmcr.2022.100079DOI Listing

Publication Analysis

Top Keywords

natural compounds
12
compounds synthetic
8
synthetic analogues
8
compounds analogues
4
analogues potent
4
potent anti-
4
sars-cov-2
4
anti- sars-cov-2
4
sars-cov-2 anti-proteases
4
anti-proteases activities
4

Similar Publications

Context-dependent similarity analysis of analogue series for structure-activity relationship transfer based on a concept from natural language processing.

J Cheminform

January 2025

Department of Life Science Informatics and Data Science, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, University of Bonn, Friedrich-Hirzebruch-Allee 5/6, 53115, Bonn, Germany.

Analogue series (AS) are generated during compound optimization in medicinal chemistry and are the major source of structure-activity relationship (SAR) information. Pairs of active AS consisting of compounds with corresponding substituents and comparable potency progression represent SAR transfer events for the same target or across different targets. We report a new computational approach to systematically search for SAR transfer series that combines an AS alignment algorithm with context-depending similarity assessment based on vector embeddings adapted from natural language processing.

View Article and Find Full Text PDF

Size effect-based improved antioxidant activity of selenium nanoparticles regulating Anti-PI3K-mTOR and Ras-MEK pathways for treating spinal cord injury to avoid hormone shock-induced immunosuppression.

J Nanobiotechnology

January 2025

Department of Orthopedics, Zhuhai Medical College (Zhuhai People's Hospital), State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Chemistry and Materials Science, Jinan University, Zhuhai, 519000, China.

Spinal cord injury (SCI) is a critical condition affecting the central nervous system that often has permanent and debilitating consequences, including secondary injuries. Oxidative damage and inflammation are critical factors in secondary pathological processes. Selenium nanoparticles have demonstrated significant antioxidative and anti-inflammatory properties via a non-immunosuppressive pathway; however, their clinical application has been limited by their inadequate stability and functionality to cross the blood-spinal cord barrier (BSCB).

View Article and Find Full Text PDF

On-Demand Continuous Flow Synthesis of Pentafluorosulfanyl Chloride (SFCl) Using a Custom-Made Stirring Packed-Bed Reactor.

Chemistry

January 2025

Université de Montréal, FRQNT Centre in Green Chemistry and Catalysis, Centre for Continuous Flow Synthesis, Department of Chemistry, 1375 av. Thérèse Lavoie-Roux, Montréal, QC, H2V 0B3, Canada.

The pentafluorosulfanyl (SF-) group has been the subject of a surge of interest in the past decade, but there is still little practicality associated with its synthesis and installation. Herein is reported the first continuous flow synthesis of pentafluorosulfanyl chloride (SFCl), the most common reagent for the synthesis of SF-substituted compounds. The synthesis is based on inexpensive and easy-to-handle reagents: sulfur powder (S), trichloroisocyanuric acid (TCCA) and potassium fluoride (KF).

View Article and Find Full Text PDF

Copper Tantalate by a Sodium-Driven Flux-Mediated Synthesis for Photoelectrochemical CO Reduction.

Small Methods

January 2025

Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, United States.

Copper-tantalate, CuTaO (CTO), shows significant promise as an efficient photocathode for multi-carbon compounds (C) production through photoelectrochemical (PEC) CO reduction, owing to its suitable energy bands and catalytic surface. However, synthesizing CTO poses a significant challenge due to its metastable nature and thermal instability. In this study, this challenge is addressed by employing a flux-mediated synthesis technique using a sodium-based flux to create sodium-doped CTO (Na-CTO) thin films, providing enhanced nucleation and stabilization for the CTO phase.

View Article and Find Full Text PDF

Non-Hodgkin lymphomas (NHL), including diffuse large B-cell lymphoma (DLBCL), Burkitt lymphoma (BL), and follicular lymphoma (FL), predominantly arise from B cells undergoing germinal center (GC) reactions. The transcriptional repressor B-cell lymphoma 6 (BCL6) is indispensable for GC formation and contributes to lymphomagenesis via its BTB domain-mediated suppression of target genes. Dysregulation of BCL6 underpins the pathogenesis of GC-derived NHL.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!