Background: Type 2 diabetes mellitus (T2D) is associated with an increased fracture risk. It is debated whether sodium-glucose cotransporter 2 (SGLT2) inhibitors influence fracture risk in T2D. We aimed to investigate the risk of major osteoporotic fractures (MOF) with SGLT2 inhibitors compared to glucagon-like peptide 1 (GLP-1) receptor agonists when used as add-on therapies to metformin.
Methods: We conducted a population-based cohort study using Danish national health registries. Diagnoses were obtained from discharge diagnosis codes (ICD-10 and ICD-8-system) from the Danish National Patient Registry, and all redeemed drug prescriptions were obtained from the Danish National Prescription Registry (ATC classification system). Subjects treated with metformin in combination with either SGLT2 inhibitors or GLP-1 receptor agonists were identified and enrolled from 2012 to 2018. Subjects were then propensity-score matched 1:1 based on age, sex, and index date. Major osteoporotic fractures (MOF) were defined as hip, vertebral, humerus, or forearm fractures. A Cox proportional hazards model was utilized to estimate hazard rate ratios (HR) for MOF, and survival curves were plotted using the Kaplan-Meier estimator.
Results: In total, 27,543 individuals treated with either combination were identified and included. After matching, 18,390 individuals were included in the main analysis (9,190 in each group). Median follow-up times were 355 [interquartile range (IQR) 126-780] and 372 [IQR 136-766] days in the SGLT2 inhibitor and GLP-1 receptor agonist group, respectively. We found a crude HR of 0.77 [95% CI 0.56-1.04] for MOF with SGLT2 inhibitors compared to GLP-1 receptor agonists. In the fully adjusted model, we obtained an unaltered HR of 0.77 [95% CI 0.56-1.05]. Results were similar across subgroup- and sensitivity analyses.
Conclusion: These results suggest that SGLT2 inhibitors have no effect on fracture risk when compared to GLP-1 receptor agonists. This is in line with results from previous studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9437938 | PMC |
http://dx.doi.org/10.3389/fendo.2022.861422 | DOI Listing |
Cardiovasc Drugs Ther
January 2025
Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Jinan City, 250014, China.
Background: Glucagon-like peptide-1 (GLP-1) is a crucial incretin hormone secreted by intestinal endocrine L cells. Given its pivotal physiological role, researchers have developed GLP-1 receptor agonists (GLP-1 RAs) through structural modifications. These analogues display pharmacological effects similar to those of GLP-1 but with augmented stability and are regarded as an effective means of regulating blood glucose levels in clinical practice.
View Article and Find Full Text PDFObes Med
December 2024
The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, MD Anderson Cancer Center & UTHealth Houston Graduate School for Biomedical Sciences, University of Texas Health Science at Houston, Texas, 77030, USA.
Glucagon-like peptide 1 (GLP-1) receptor agonists (GLP-1RAs) have proven to be highly effective in reducing obesity across species and ages, gaining unmet popularity in clinical treatments against obesity. Although extensive research efforts have been made to explore how the brain regulates body weight homeostasis including the effect brought up by GLP-1 and its synthetic analogs GLP-1RAs, the identity of neurons and neural pathways that are responsible for the observed anti-obesity effect of GLP-1RAs remain largely elusive. Excitingly, three recent high-profile studies presented compelling evidence that each argues for the importance of GLP-1Rs in the dorsomedial hypothalamus, hindbrain, or lateral septum, respectively, in mediating the anti-obesity effect of GLP-1RAs.
View Article and Find Full Text PDFWe recently reported that a chimeric peptide (GEP44) targeting the glucagon-like peptide-1 receptor (GLP-1R) and neuropeptide Y1- and Y2-receptors decreased body weight (BW), energy intake and core temperature in diet-induced obese (DIO) male and female mice. Given that GEP44 was found to reduce core temperature (surrogate measure of energy expenditure (EE)) in DIO mice, we hypothesized that GEP44 would reduce EE in male and female high fat diet (HFD)-fed rats. To test this, rats were maintained on a HFD for at least 4 months to elicit DIO prior to undergoing a sequential 2-day vehicle period, 2-day GEP44 (50 nmol/kg) period and a minimum 2-day washout period and detailed measures of energy homeostasis.
View Article and Find Full Text PDFClin Diabetes
September 2024
Division of Endocrinology, Diabetes and Metabolism, Indiana University School of Medicine, Indianapolis, IN.
Clin Diabetes
September 2024
Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT.
In this emulated comparative effectiveness target trial of glucagon-like peptide 1 (GLP-1) receptor agonist, sodium-glucose cotransporter 2 (SGLT2) inhibitor, dipeptidyl peptidase 4 (DPP-4) inhibitor, and sulfonylurea therapy among adults with type 2 diabetes at moderate cardiovascular disease risk, sulfonylurea use was associated with a significantly higher risk of hypoglycemia requiring emergency department or hospital care than treatment with DPP-4 inhibitors, GLP-1 receptor agonists, or SGLT2 inhibitors. This consideration can guide the choice of glucose-lowering therapy in this highly prevalent patient population, in whom avoidance of hypoglycemia is important, yet among whom the risk of severe hypoglycemia has not been examined previously.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!