Non-alcoholic fatty liver disease (NAFLD), hallmarked by liver steatosis, is becoming a global concern, but effective and safe drugs for NAFLD are still lacking at present. Parathyroid hormone (PTH), the only FDA-approved anabolic treatment for osteoporosis, is important in calcium-phosphate homeostasis. However, little is known about its potential therapeutic effects on other diseases. Here, we report that intermittent administration of PTH ameliorated non-alcoholic liver steatosis in diet-induced obese (DIO) mice and db/db mice, as well as fasting-induced hepatic steatosis. , PTH inhibits palmitic acid-induced intracellular lipid accumulation in a parathyroid hormone 1 receptor (PTH1R)-dependent manner. Mechanistically, PTH upregulates the expression of genes involved in lipid β-oxidation and suppresses the expression of genes related to lipid uptake and lipogenesis by activating the cAMP/PKA/CREB pathway. Taken together, our current finding proposes a new therapeutic role of PTH on NAFLD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9428460 | PMC |
http://dx.doi.org/10.3389/fendo.2022.899731 | DOI Listing |
BMC Nephrol
January 2025
Department of Nephrology, Southern University of Science and Technology Hospital, Shenzhen, China.
Background: Calcification of the radial artery is one of the main causes of anastomotic stenosis in autogenous arteriovenous fistulas in uremic patients. However, the pathogenesis of calcification is still unknown. This study attempted to screen and validate the risk factors for vascular calcification in patients with uremia.
View Article and Find Full Text PDFJ Clin Med
December 2024
Department of Aesthetic and Reconstructive Breast Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100144, China.
Pubertal gynecomastia (PG) is a common condition characterized by the abnormal development and hyperplasia of unilateral or bilateral breast tissue in adolescent males, affecting up to 50% of appropriately aged adolescents and exhibiting rising prevalence over recent years. The etiology of PG is multifaceted, encompassing physiological, pharmacological, and pathological factors. This narrative review synthesizes evidence from a comprehensive selection of peer-reviewed literature, including observational studies, clinical trials, systematic reviews, and case reports, to explore the pivotal role of endocrine hormones in the pathogenesis of PG.
View Article and Find Full Text PDFJ Clin Med
December 2024
Division of Endocrinology, Diabetes and Metabolism, ENDO-ERN Center for Rare Pediatric Endocrine Disorders, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, 11527 Athens, Greece.
Kenny-Caffey syndrome 2 (KCS2) is a rare cause of hypoparathyroidism, inherited in an autosomal dominant mode, resulting from pathogenic variants of the gene, which is implicated in intracellular pathways regulating parathormone (PTH) synthesis and skeletal and parathyroid gland development. : The case of a boy is reported, presenting with the characteristic and newly identified clinical, biochemical, radiological, and genetic abnormalities of KCS2. : The proband had noticeable dysmorphic features, and the closure of the anterior fontanel was delayed until the age of 4 years.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Avda. de Atenas s/n, 28922 Alcorcón, Madrid, Spain.
Biochem J
January 2025
University of Pittsburgh School of Medicine, Pittsburgh, United States.
The sodium phosphate cotransporter-2A (NPT2A) mediates basal and parathyroid hormone (PTH)- and fibroblast growth factor-23 (FGF23)-regulated phosphate transport in proximal tubule cells of the kidney. Both basal and hormone-sensitive transport require sodium hydrogen exchanger regulatory factor-1 (NHERF1), a scaffold protein with tandem PDZ domains, PDZ1 and PDZ2. NPT2A binds to PDZ1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!