Robust Chemical Strategy for Stably Labeling Polyester-Based Nanoparticles with BODIPY Fluorophores.

ACS Appl Polym Mater

Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104-4318, United States; The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-4318, United States.

Published: February 2022

Aliphatic polyesters are among materials most extensively used for producing biodegradable polymeric nanoparticles currently in development as delivery carriers and imaging agents for a range of biomedical applications. Their clinical translation requires robust particle labeling methodologies that allow reliably monitoring the fate of these formulations in complex biological environments. In the present study, a practical and versatile synthetic strategy providing conjugates of poly(D,L-lactide) representative of this class of polymers with BODIPY fluorophores varying in functional groups and excitation/emission maxima was investigated as a tool for making traceable nanoparticles. Polymer-probe conjugation was accomplished by carbodiimide-induced and 4-(dimethylamino)pyridinium 4-toluenesulfonate-catalyzed esterification of the polymer's terminal hydroxyl group, either directly with a carboxy-functionalized fluorophore or with amine-protected amino acids (Boc-glycine or Boc-6-aminohexanoic acid). In the latter case, the amino acid-derivatized polymeric precursors were reacted with amine-reactive BODIPY dyes after the removal of the protective group. Unlike nanoparticles encapsulating a strongly hydrophobic BODIPY (logP = 4.3), nanoparticles labeled covalently with its carboxy-functionalized analogue (BODIPY FL) demonstrated stable particle-tracer association under perfect sink conditions. Furthermore, in contrast to the encapsulated dye rapidly partitioning from particles onto cell membranes but not stably retained by cultured cells, the internalization of the covalently attached probe was an irreversible process requiring the presence of serum, consistent with active nanoparticle uptake by endocytosis. In conclusion, the conjugation of particle-forming polymers with BODIPY fluorophores offers an effective and accessible labeling strategy for making traceable polyester-based biodegradable nanoparticles and is expected to facilitate their development and optimization as therapeutic carriers and diagnostic agents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9432775PMC
http://dx.doi.org/10.1021/acsapm.1c01601DOI Listing

Publication Analysis

Top Keywords

bodipy fluorophores
12
polymers bodipy
8
making traceable
8
nanoparticles
6
bodipy
6
robust chemical
4
chemical strategy
4
strategy stably
4
stably labeling
4
labeling polyester-based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!