A mesenchymal cell activation is a hallmark event of pulmonary fibrosis. Alveolar type 2 (AT2) cells are progenitor cells that maintain alveolar homeostasis, and their damage is assumed to be an initiating event for pulmonary fibrosis. However, the interaction between the lung fibrogenic microenvironment and AT2 cell dynamics remains to be elucidated. Here, we report a unique role of the lung fibrogenic microenvironment, where cell type-specific tissue reconstruction is achieved by exogenous cell transplantation. We found that in the lung fibrogenic microenvironment the AT2 cell pool was depleted, whereas mesenchymal cells could promote intact AT2 cell proliferation . Furthermore, exogenously transplanted AT2 cells formed alveolar colonies and ameliorated pulmonary fibrosis. Exogenous tumor cells formed tumor nests with relevant histological and transcriptional properties. Human primary cells were adaptable to this microenvironment, facilitating epithelial cell-targeted therapy in pulmonary fibrosis and the establishment of patient-derived xenografts for precision medicine in lung cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9436761 | PMC |
http://dx.doi.org/10.1016/j.isci.2022.104912 | DOI Listing |
Respir Res
January 2025
Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA.
Progressive forms of interstitial lung diseases, including idiopathic pulmonary fibrosis (IPF), are deadly disorders lacking non-invasive biomarkers for assessment of early disease activity, which presents a major obstacle in disease management. Excessive extracellular matrix (ECM) deposition is a hallmark of these disorders, with fibronectin being an abundant ECM glycoprotein that is highly upregulated in early fibrosis and serves as a scaffold for the deposition of other matrix proteins. Due to its role in active fibrosis, we are targeting fibronectin as a biomarker of early lung fibrosis disease activity via the PEGylated fibronectin-binding polypeptide (PEG-FUD).
View Article and Find Full Text PDFPart Fibre Toxicol
January 2025
State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical School, Soochow University, Suzhou, Jiangsu, 215123, China.
Background: The advancement of nanotechnology underscores the imperative need for establishing in silico predictive models to assess safety, particularly in the context of chronic respiratory afflictions such as lung fibrosis, a pathogenic transformation that is irreversible. While the compilation of predictive descriptors is pivotal for in silico model development, key features specifically tailored for predicting lung fibrosis remain elusive. This study aimed to uncover the essential predictive descriptors governing nanoparticle-induced pulmonary fibrosis.
View Article and Find Full Text PDFHepatol Commun
November 2024
Department of Medicine, University of California, San Diego, La Jolla, California, USA.
Background: Liver fibrosis is caused by chronic toxic or cholestatic liver injury. Fibrosis results from the recruitment of myeloid cells into the injured liver, the release of inflammatory and fibrogenic cytokines, and the activation of myofibroblasts, which secrete extracellular matrix, mostly collagen type I. Hepatic myofibroblasts originate from liver-resident mesenchymal cells, including HSCs and bone marrow-derived CD45+ collagen type I+ expressing fibrocytes.
View Article and Find Full Text PDFCells
December 2024
Biotherapeutics Enabling Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46225, USA.
Idiopathic pulmonary fibrosis (IPF) is the most common interstitial lung disease with unknown etiology, characterized by chronic inflammation and tissue scarring. Although, Pirfenidone and Nintedanib slow the disease progression, no currently available drugs or therapeutic interventions address the underlying cause, highlighting the unmet medical need. A matricellular protein, Wnt-1-induced secreted protein 1 (WISP1), also referred to as CCN4 (cellular communication network factor 4), is a secreted multi-modular protein implicated in multi-organ fibrosis.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Department of Medicine, Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA 02115.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!