A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deep learning framework for prediction of infection severity of COVID-19. | LitMetric

AI Article Synopsis

  • A research team developed a deep learning framework to predict the severity of lung infections in COVID-19 patients using chest CT scans, emphasizing the importance of monitoring disease progression.
  • They utilized a dataset of 232 scans, incorporating additional public datasets, and implemented a model that segments lung lobes and assesses infection severity through multiple trained models for different imaging views.
  • The framework achieved high accuracy in segmentation, with a notable Mean Absolute Error (MAE) of 0.505 compared to radiologists' MAE of 0.571, demonstrating its potential effectiveness in clinical applications.

Article Abstract

With the onset of the COVID-19 pandemic, quantifying the condition of positively diagnosed patients is of paramount importance. Chest CT scans can be used to measure the severity of a lung infection and the isolate involvement sites in order to increase awareness of a patient's disease progression. In this work, we developed a deep learning framework for lung infection severity prediction. To this end, we collected a dataset of 232 chest CT scans and involved two public datasets with an additional 59 scans for our model's training and used two external test sets with 21 scans for evaluation. On an input chest Computer Tomography (CT) scan, our framework, in parallel, performs a lung lobe segmentation utilizing a pre-trained model and infection segmentation using three distinct trained based models, one for each of the axial, coronal, and sagittal views. By having the lobe and infection segmentation masks, we calculate the infection severity percentage in each lobe and classify that percentage into 6 categories of infection severity score using a k-nearest neighbors (k-NN) model. The lobe segmentation model achieved a Similarity Score (DSC) in the range of [0.918, 0.981] for different lung lobes and our infection segmentation models gained DSC scores of 0.7254 and 0.7105 on our two test sets, respectfully. Similarly, two resident radiologists were assigned the same infection segmentation tasks, for which they obtained a DSC score of 0.7281 and 0.6693 on the two test sets. At last, performance on infection severity score over the entire test datasets was calculated, for which the framework's resulted in a Mean Absolute Error (MAE) of 0.505 ± 0.029, while the resident radiologists' was 0.571 ± 0.039.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9428758PMC
http://dx.doi.org/10.3389/fmed.2022.940960DOI Listing

Publication Analysis

Top Keywords

infection severity
20
infection segmentation
16
test sets
12
infection
10
deep learning
8
learning framework
8
chest scans
8
lung infection
8
lobe segmentation
8
severity score
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: