Background: Three-dimensional chromosome loop conformations are powerful regulators of gene expression. These chromosome conformations can be detected both in tumour and in circulating cells and have significant disease biomarker potential. We have recently detected specific chromosome conformations in circulating cells of patients with prostate cancer (PCa) which were similar to ones found in their primary tumours, however, the possibility of horizontal transfer of chromosome conformations was not studied previously.
Methods: Human monocytes (U937) were co-cultured in Boyden chambers through 0.4 uM membrane with or without PC-3 human PCa cells or their conditioned media and a custom DNA microarray for 900,000 chromosomal loops covering all coding loci and non-coding RNA genes was performed on each part of the co-culture system.
Results: We have detected 684 PC-3 cell-specific chromosome conformations across the whole genome that were absent in naïve monocytes but appeared in monocytes co-cultured with PC-3 cells or with PC-3-conditioned media. Comparing PC3-specific conformations to the ones we have previously detected in systemic circulation of high-risk PCa patients revealed 9 positive loops present in both settings.
Conclusions: Our results demonstrate for the first time a proof of concept for horizontal transfer of chromosome conformations without direct cell-cell contact. This carries high clinical relevance as we have previously observed chromatin conformations in circulating cells of patients with melanoma and PCa similar to ones in their primary tumours. These changes can be used as highly specific biomarkers for diagnosis and prognosis. Further studies are required to elucidate the specific mechanism of chromosome conformations transfer and its clinical significance in particular diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9437316 | PMC |
http://dx.doi.org/10.3389/fonc.2022.990842 | DOI Listing |
Nat Commun
January 2025
Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
Transcription factors guide tissue development by binding to developmental stage-specific targets and establishing an appropriate enhancer landscape. In turn, DNA and chromatin modifications direct the genomic binding of transcription factors. However, how transcription factors navigate chromatin features to selectively bind a small subset of all the possible genomic target loci remains poorly understood.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China.
Background: Red raspberry (Rubus idaeus L.) is a renowned fruit plant with significant medicinal value. Its nuclear genome and chloroplast genome (plastome) have been reported, while there is a lack of genetic information on its mitogenome.
View Article and Find Full Text PDFPlant Cell Rep
January 2025
Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Ministry of Education, Southwest University, Chongqing, 400715, China.
We identified a CXCXCPXC motif and 11 CLG genes that regulate epidermal development by interacting with homeodomain leucine-zipper IV family proteins in Arabidopsis. Zinc finger proteins (ZFPs), the key regulators of plant growth and development, can be categorized based on the sequence patterns of zinc finger motifs. Here, by aligning the amino acid sequences of CFL1, AtCFL1, AtCFL2, GIRl, and GIR2, we identified the CXCXCPXC motif in their C-terminus, which differs from all the previously characterized canonical zinc finger motifs.
View Article and Find Full Text PDFRev Physiol Biochem Pharmacol
January 2025
Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.
Nucleic acids are highly charged, and electrical forces are involved heavily in how our DNA is compacted and packaged into such a small space, how chromosomes are formed, and how DNA damage is repaired. In addition, electrical forces are crucial to the formation of non-canonical DNA structures called G-Quadruplexes which play multiple biological roles.
View Article and Find Full Text PDFCell Oncol (Dordr)
January 2025
College of Life Science and Technology, Innovation Center of Molecular Diagnostics, Beijing University of Chemical Technology, Beijing, 100029, China.
Purpose: Intrahepatic cholangiocarcinoma (ICC) is a common primary hepatic tumors with a 5-year survival rate of less than 20%. Therefore, it is crucial to elucidate the molecular mechanisms of ICC. Recently, the advance of high-throughput chromosome conformation capture (Hi-C) technology help us look insight into the three-dimensional (3D) genome structure variation during tumorigenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!