Viral cross-species transmission is recognized to be a major threat to both human and animal health, however detailed information on determinants underlying virus host tropism and susceptibility is missing. Influenza C and D viruses (ICV, IDV) are two respiratory viruses that share up to 50% genetic similarity, and both employ 9-O-acetylated sialic acids to enter a host cell. While ICV infections are mainly restricted to humans, IDV possesses a much broader host tropism and has shown to have a zoonotic potential. This suggests that additional virus-host interactions play an important role in the distinct host spectrum of ICV and IDV. In this study, we aimed to characterize the innate immune response of the respiratory epithelium of biologically relevant host species during influenza virus infection to identify possible determinants involved in viral cross-species transmission. To this end, we performed a detailed characterization of ICV and IDV infection in primary airway epithelial cell (AEC) cultures from human, porcine, and bovine origin. We monitored virus replication kinetics, cellular and host tropism, as well as the host transcriptional response over time at distinct ambient temperatures. We observed that both ICV and IDV predominantly infect ciliated cells, independently from host and temperature. Interestingly, temperature had a profound influence on ICV replication in both porcine and bovine AEC cultures, while IDV replicated efficiently irrespective of temperature and host. Detailed time-resolved transcriptome analysis revealed both species-specific and species uniform host responses and highlighted 34 innate immune-related genes with clear virus-specific and temperature-dependent profiles. These data provide the first comprehensive insights into important common and species-specific virus-host dynamics underlying the distinct host tropism of ICV and IDV, as well as possible determinants involved in viral cross-species transmission.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9437644 | PMC |
http://dx.doi.org/10.3389/fimmu.2022.970325 | DOI Listing |
Mini Rev Med Chem
August 2024
Xiamen Tasman Bio-Tech Co., Ltd., Xiamen, Fujian, China.
Flu is an acute respiratory disease caused by influenza viruses. The influenza viruses are classified as Alphainfluenzavirus (influenza A virus, IAV), Betainfluenzavirus (influenza B virus, IBV), Gammainfluenzavirus (influenza C virus, ICV), and Deltainfluenzavirus (influenza D virus, IDV) according to the antigenicity of nucleoproteins (NPs) and matrix (M) proteins in vivo. It is estimated that the seasonal influenza epidemics will cause about 3-5 million cases of serious illness and 290,000-650,000 deaths in the world every year, while influenza A virus is the leading cause of infection and death.
View Article and Find Full Text PDFVirology
October 2023
Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA. Electronic address:
Bovine respiratory disease (BRD) complex is a multifactorial respiratory disease of cattle. Seven-segmented influenza C (ICV) and D (IDV) viruses have been identified in cattle with BRD, however, molecular epidemiology and prevalence of IDV and ICV in the diseased population remain poorly characterized. Here, we conducted a molecular screening of 208 lung samples of bovine pneumonia cases for the presence of IDV and ICV.
View Article and Find Full Text PDFAdv Exp Med Biol
March 2023
Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent and Greenwich at Medway, Chatham, UK.
We have developed an influenza hemagglutinin (HA) pseudotype (PV) library encompassing all influenza A (IAV) subtypes from HA1-HA18, influenza B (IBV) subtypes (both lineages), representative influenza C (ICV), and influenza D (IDV) viruses. These influenza HA (or hemagglutinin-esterase fusion (HEF) for ICV and IDV) pseudotypes have been used in a pseudotype microneutralization assay (pMN), an optimized luciferase reporter assay, that is highly sensitive and specific for detecting neutralizing antibodies against influenza viruses. This has been an invaluable tool in detecting the humoral immune response against specific hemagglutinin or hemagglutinin-esterase fusion proteins for IAV to IDV in serum samples and for screening antibodies for their neutralizing abilities.
View Article and Find Full Text PDFAnimals (Basel)
November 2022
Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand.
Both influenza C (ICV) and influenza D (IDV) viruses were recently included as bovine respiratory disease (BRD) causes, but their role in BRD has not been evaluated. Therefore, the mortality and reproductive performances of BRD calves with different isolated viruses were determined in this study. Data on 152 BRD calves with bovine viral diarrhoea virus (BVDV), bovine respiratory syncytial virus (BRSV), bovine coronavirus (BCoV), bovine parainfluenza virus 3 (BPIV-3), ICV, or IDV from nasal swab samples using real-time rt-PCR were used.
View Article and Find Full Text PDFMethods Mol Biol
October 2022
Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.
Influenza D virus (IDV) is a new member of influenza virus that uses cattle as the primary reservoir and infects multiple agricultural animals. Similar to influenza C virus (ICV), IDV also has seven segments in its genome and has only one major surface glycoprotein, called the hemagglutinin-esterase-fusion (HEF) protein, for receptor-binding, receptor-destroying, and membrane fusion. HEF utilizes 9-O-acetylated sialic acids as its receptor and has both receptor binding and esterase activities, thus is a critical determinant of host tropism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!