Galactosylation of cell-surface glycoprotein required for hyphal growth and cell wall integrity in Schizosaccharomyces japonicus.

J Biosci Bioeng

Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan. Electronic address:

Published: November 2022

Schizosaccharomyces japonicus is a dimorphic yeast, transiting between unicellular and hyphal growth. The glycoproteins of fission yeast contain, in addition to mannose (Man), a large number of galactose (Gal) residues. Previously, we reported that the cell-surface O-glycans of S. japonicus comprise mainly tri-saccharides (Gal-Man-Man) as a main component, in contrast to the tetra-saccharides observed in other Schizosaccharomyces species. Here we have investigated the function of cell-surface Gal residues in S. japonicus. Because disruption of gms1, encoding the UDP-Gal transporter required for galactomannan synthesis, abolishes cell-surface galactosylation in Schizosaccharomyces pombe, we constructed a deletion mutant of the homologous gene in S. japonicus gms1Δ [gms1 (S.j)] and determined the N- and O-linked oligosaccharide structures present on the cell surface. Disruption of gms1 (S.j) resulted in a complete lack of Gal on the cell surface, indicating that Gms1 plays an essential role in supplying UDP-Gal from the cytoplasm to the Golgi lumen. Analytical microscopy of gms1Δ demonstrated that the lack of cell-surface Gal did not affect cell growth or morphology during vegetative growth. However, hyphal development was blocked in gms1Δ, even in the presence of the topoisomerase I inhibitor camptothecin, which is known to induce hyphal differentiation in wild-type S. japonicus. Collectively, these findings show that Gal-containing oligosaccharides are required for cell wall integrity during filamentous growth in S. japonicus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiosc.2022.07.014DOI Listing

Publication Analysis

Top Keywords

hyphal growth
8
cell wall
8
wall integrity
8
schizosaccharomyces japonicus
8
gal residues
8
cell-surface gal
8
disruption gms1
8
cell surface
8
growth
5
cell
5

Similar Publications

Inhibitory and Curative Effects and Mode of Action of Hydroxychloroquine on of Tomato.

Phytopathology

January 2025

Guizhou University, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Huaxi District, Guiyang, Guizhou Province of China, Guiyang, China, 550025;

Gray mold is an important disease of crops and is widespread, harmful, difficult to control, and prone to developing fungicide resistance. Screening new fungicides is an important step in controlling this disease. Hydroxychloroquine is an anti-inflammatory and anti-malarial agent, which has shown marked inhibitory activity against many fungi in medicine.

View Article and Find Full Text PDF

Magnaporthe oryzae is the causal agent of rice blast, one of the most serious diseases affecting rice cultivation around the world. During plant infection, M. oryzae forms a specialised infection structure called an appressorium.

View Article and Find Full Text PDF

Polygonatum cyrtonema Hua (Duohua Huangjing, Asparagaceae in angiosperms) is a traditional medicinal and edible plant in China. Its rhizomes can potentially enhance immunity, reduce tumor growth and the effects of aging, improve memory, and even reduce blood sugar levels (Zhao et al. 2020).

View Article and Find Full Text PDF

Monitoring the impact of confinement on hyphal penetration and fungal behavior.

PLoS One

January 2025

Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America.

Through their expansive mycelium network, soil fungi alter the physical arrangement and chemical composition of their local environment. This can significantly impact bacterial distribution and nutrient transport and can play a dramatic role in shaping the rhizosphere around a developing plant. However, direct observation and quantitation of such behaviors is extremely difficult due to the opacity and complex porosity of the soil microenvironment.

View Article and Find Full Text PDF

Coordination between growth and division is a fundamental feature of cells. In many syncytia, cell growth must couple with multiple nuclear divisions in one cytoplasm. In the fungus, , cell-cycle progression and hyphal elongation require condensates formed by the protein Whi3 in complex with distinct mRNA species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!