Polydatin ameliorates hepatic ischemia-reperfusion injury by modulating macrophage polarization.

Hepatobiliary Pancreat Dis Int

Department of Organ Transplantation, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai 200003, China. Electronic address:

Published: February 2024

Background: Polydatin, a glucoside of resveratrol, has shown protective effects against various diseases. However, little is known about its effect on hepatic ischemia-reperfusion (I/R) injury. This study aimed to elucidate whether polydatin protects liver against I/R-induced injury and to explore the underlying mechanism.

Methods: After gavage feeding polydatin once daily for a week, mice underwent a partial hepatic I/R procedure. Serum alanine aminotransferase (ALT)/aspartate aminotransferase (AST), hematoxylin-eosin (H&E) and TdT-mediated dUTP nick-end labeling (TUNEL) staining were used to evaluate liver injury. The severity related to the inflammatory response and reactive oxygen species (ROS) production was also investigated. Furthermore, immunofluorescence and Western blotting were used to detect macrophage polarization and the NF-κB signaling pathway in macrophages.

Results: Compared with the I/R group, polydatin pretreatment significantly attenuated I/R-induced liver damage and apoptosis. The oxidative stress marker (dihydroethidium fluorescence, malondialdehyde, superoxide dismutase and glutathione peroxidase) and I/R related inflammatory cytokines (interleukin-1β, interleukin-10 and tumor necrosis factor-α) were significantly suppressed after polydatin treatment. In addition, the result of immunofluorescence indicated that polydatin reduced the polarization of macrophages toward M1 macrophages both in vivo and in vitro. Western blotting showed that polydatin inhibited the pro-inflammatory function of RAW264.7 via down-regulating the NF-κB signaling pathway.

Conclusions: Polydatin protects the liver from I/R injury by remodeling macrophage polarization via NF-κB signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.hbpd.2022.08.009DOI Listing

Publication Analysis

Top Keywords

macrophage polarization
12
nf-κb signaling
12
polydatin
9
hepatic ischemia-reperfusion
8
i/r injury
8
polydatin protects
8
protects liver
8
western blotting
8
polarization nf-κb
8
injury
5

Similar Publications

Background & Aims: Metabolic dysfunction-associated steatotic liver (MASLD) progression is driven by chronic inflammation and fibrosis, largely influenced by Kupffer cell (KC) dynamics, particularly replenishment of pro-inflammatory monocyte-derived KCs (MoKCs) due to increased death of embryo-derived KCs. Adenosine A3 receptor (A3AR) plays a key role in regulating metabolism and immune responses, making it a promising therapeutic target. This study aimed to investigate the impact of selective A3AR antagonism for regulation of replenished MoKCs, thereby improving MASLD.

View Article and Find Full Text PDF

Ulcerative colitis (UC) is an inflammatory bowel disease marked by gut inflammation and microbial dysbiosis. Exopolysaccharides (EPS) from probiotic bacteria have been shown to regulate microbial composition and metabolism, but their role in promoting probiotic growth and alleviating inflammation in UC remains unclear. Here, we investigate BLEPS-1, a novel EPS derived from Bifidobacterium longum subsp.

View Article and Find Full Text PDF

ADSCs-derived exosomes suppress macrophage ferroptosis via the SIRT1/NRF2 signaling axis to alleviate acute lung injury in sepsis.

Int Immunopharmacol

December 2024

Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China. Electronic address:

Acute lung injury being one of the earliest and most severe complications during sepsis and macrophages play a key role in this process. To investigate the regulatory effects and potential mechanisms of adipose mesenchymal stem cell derived-exosomes (ADSC-exo) on macrophages and septic mice, ADSCs-exo was administrated to both LPS-induced macrophage and cecal ligation and puncture (CLP) induced sepsis mice. ADSCs-exo was confirmed to inhibit M1 polarization of macrophages and to reduce excessive inflammation.

View Article and Find Full Text PDF

In clinical mastitis of dairy cows, the abnormal accumulation of apoptotic cells (ACs) and subsequent secondary necrosis and inflammation pose significant concerns, with macrophage-mediated efferocytosis, crucial for ACs clearance, remaining unexplored in this context. In nonruminants, MER proto-oncogene tyrosine kinase (MERTK) receptors are essential for efferocytosis and A Disintegrin and Metalloproteinase 17 (ADAM17) is thought to play a role in regulating MERTK integrity. This study aimed to delineate the in situ role of efferocytosis in clinical mastitis, with a particular focus on the interaction between MERTK and ADAM17 in bovine macrophages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!