Cell phone use and radio-frequency electromagnetic radiation (RF-EMF) are rapidly increasing and may be associated with lower semen quality, yet results from epidemiological studies are inconclusive. Information on electronic devices use was collected through standard questionnaires from 1454 men aged 22-45 years old. Semen volume, sperm concentration, total sperm count, total motility, progressive motility, and normal morphology in repeated specimens were determined by trained clinical technicians. Percent changes [95% confidence intervals (CIs)] were estimated as (10-1) × 100 for electronic devices use associated with repeated sperm quality parameters in the linear mixed-effect models. After adjusting for multiple confounders, we found significant inverse associations of total duration of electronic devices use with sperm progressive motility and total motility, duration of cell phone and computer use with sperm concentration, progressive motility, and total motility (all P < 0.05). No significant association was found between cell phone/computer use alone and sperm quality parameters. Moreover, per hour increase of time spent on cell phone talking was associated with decreased sperm concentration and total count by an average of -8.0% (95% CI: -15.2%, -0.2%) and -12.7% (95% CI: -21.3%, -3.1%), respectively. Besides, daily calling time was associated with lower sperm progressive motility and total motility among those who used headsets during a call (P for interaction <0.05). In conclusion, our study suggested that more time spent on electronic devices use had a modest reduction effect on semen quality. Daily calling time was significantly associated with lower sperm concentration and total count, and using headsets during a call appeared to aggravate the negative association between daily calling time and sperm motility. Additional studies are needed to confirm these findings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2022.120089 | DOI Listing |
iScience
January 2025
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
Organic solar cells (OSCs) have developed rapidly in recent years. However, the energy loss ( ) remains a major obstacle to further improving the photovoltaic performance. To address this issue, a ternary strategy has been employed to precisely tune the and boost the efficiency of OSCs.
View Article and Find Full Text PDFClin Cosmet Investig Dermatol
January 2025
Photodermatology Unit, Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
Visible light has been considered to have minimal impact on the skin. However, the increasing use of electronic devices has led to a significant increase in exposure to visible light, especially blue light. We measured the irradiance (mW/cm) and estimated dose (J/cm) of visible light and blue light emitted from various electronic devices including smartphones, tablets and computers.
View Article and Find Full Text PDFMolecular junctions (MJs) are celebrated nanoelectronic devices for mimicking conventional electronic functions, including rectifiers, sensors, wires, switches, transistors, negative differential resistance, and memory, following an understanding of charge transport mechanisms. However, capacitive nanoscale molecular junctions are rarely seen. The present work describes electrochemically (E-Chem) grown covalently attached molecular thin films of 10, 14.
View Article and Find Full Text PDFOrthop J Sports Med
January 2025
Icahn School of Medicine at Mount Sinai, New York, New York, USA.
Background: Pickleball is one of the fastest-growing sports in the United States. It is popular among seniors but has recently grown across all age groups. As pickleball has gained interest, its corresponding injury burden has also increased.
View Article and Find Full Text PDFSmall
January 2025
Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, College of Materials Science and Engineering, Guilin University of Technology, No.12 Jian'gan Rd., Qixing District, Guilin, 541004, China.
Nonconventional Luminescent Materials (NLMs) with distinctive optical properties are garnering significant attention. A key challenge in their practical application lies in precisely controlling their emission behavior, particularly achieving excitation wavelength-independent emission, which is paramount for accurate chemical sensing. In this study, NLMs (Y1, Y2, Y3, and Y4) are synthesized via a click reaction, and it is found that excitation wavelength-dependent emission correlates with molecular cluster formation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!