Transformation and toxicity dynamics of polycyclic aromatic hydrocarbons in a novel biological-constructed wetland-microalgal wastewater treatment process.

Water Res

Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 72 Binhai Road, Jimo District, Qingdao, Shandong 266237, China. Electronic address:

Published: September 2022

In this study, a novel wastewater treatment process combining sequencing batch reactor, constructed wetland and microalgal membrane photobioreactor (BCM process) was proposed, and its performance on removal, transformation and toxicity reduction of polycyclic aromatic hydrocarbons (PAHs) was intensively explored. Satisfactory PAHs removal (90.58%-97.50%) was achieved and molecular weight had significant impact on the removal pathways of different PAHs. Adsorption dominated the removal of high molecular weight PAHs, while the contribution ratio of microbial degradation increased with the decrease of molecular weight of PAHs. More importantly, it was reported for the first time that substituted PAHs (SPAHs) produced by microbial degradation of PAHs would lead to increased toxicity during the BCM process. High PAHs (75.37%-88.52%) and SPAHs removal (99.56%-100.00%) were achieved in the microalgae unit due to its abundant cytochrome P450 enzyme, which decreased the bacterial toxicity by 90.93% and genotoxicity by 93.08%, indicating that microalgae played significance important role in ensuring water security. In addition, the high quantitative relationship (R = 0.98) between PAHs, SPAHs and toxicity exhibited by regression model analysis proved that more attention should be paid to the ecotoxicity of derivatives of refractory organic matters in wastewater treatment plants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2022.119023DOI Listing

Publication Analysis

Top Keywords

wastewater treatment
12
molecular weight
12
pahs
9
transformation toxicity
8
polycyclic aromatic
8
aromatic hydrocarbons
8
treatment process
8
bcm process
8
weight pahs
8
microbial degradation
8

Similar Publications

Removal of Antibiotics in Breeding Wastewater Tailwater Using Microalgae-Based Process.

Bull Environ Contam Toxicol

January 2025

Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.

Ciprofloxacin (CIP) and oxytetracycline (OTC) are commonly detected antibiotic species in breeding wastewater, and microalgae-based antibiotic treatment technology is an environmentally friendly and cost-effective method for its removal. This study evaluated the effects of CIP and OTC on Scenedesmus sp. in the breeding wastewater tailwater and the removal mechanisms of antibiotics.

View Article and Find Full Text PDF

The widespread application of swine-farming wastewater to soil and water is increasingly contributing to heavy metal contamination, posing significant environmental risks. This study investigated the concentrations of eight heavy metals in swine-farming wastewater following different treatment processes, and assessed their ecological risks in Sichuan Province, China. The findings revealed that zinc, copper and nickel exhibited the highest concentrations, potentially causing heavy or strong contamination levels and leading to heavy or slight ecological risks.

View Article and Find Full Text PDF

The high performance of two-dimensional (2D) channel membranes is generally achieved by preparing ultrathin or forming short channels with less tortuous transport through self-assembly of small flakes, demonstrating potential for highly efficient water desalination and purification, gas and ion separation, and organic solvent waste treatment. Here, we report the construction of vertical channels in graphene oxide (GO) membrane based on a substrate template with asymmetric pores. The membranes achieved water permeance of 2647 L m h bar while still maintaining an ultrahigh rejection rate of 99.

View Article and Find Full Text PDF

Azo dyes constitute 60-70% of commercially used dyes and are complex, carcinogenic, and mutagenic pollutants that negatively impact soil composition, water bodies, flora, and fauna. Conventional azo dye degradation techniques have drawbacks such as high production and maintenance costs, use of hazardous chemicals, membrane clogging, and sludge generation. Constructed Wetland-Microbial Fuel Cells (CW-MFCs) offer a promising sustainable approach for the bio-electrodegradation of azo dyes from textile wastewater.

View Article and Find Full Text PDF

The efficient degradation of SAs is a significant challenge for the treatment of wastewater. To address this, the FeS@BC was prepared by calcining a mixture of pyrite and biomass, and used to activate peroxydisulfate (PDS) to degrade sulfadiazine (SDZ). The effect of carbon sources (wheat straw, rice husk, and corn cob) on catalytic activity of FeS@BC were investigated by Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), total Fe dissolution and free radical quantification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!