Preparation of pyrrolidinyl diglycolamide bonded silica particles and its rare earth separation properties.

J Chromatogr A

College of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, Beijing 100083, China.

Published: October 2022

The separation of rare earth elements by solid phase containing diglycolamide-type ligands is a hot topic. In this study, 2-[2-oxo-2-(1-pyrrolidinyl)ethoxy]acetic acid (PYRDGA) was synthesized and attached to the silica. The binding strength of SiO@PYRDGA for rare earths showed a single increasing trend with the radius of rare earth atoms. IR and XPS spectra demonstrated that carbonyl oxygen and ether bond oxygen are binding sites for rare earth ions. SiO@PYRDGA was used for the chromatographic separation of REEs, and the primary separation of 16 REEs was achieved at pH = 2.0 using HNO solution as the eluent, and La, Ce, Pr, Nd, Sm, and Eu reached the baseline separation level.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2022.463396DOI Listing

Publication Analysis

Top Keywords

rare earth
16
separation rees
8
rare
5
separation
5
preparation pyrrolidinyl
4
pyrrolidinyl diglycolamide
4
diglycolamide bonded
4
bonded silica
4
silica particles
4
particles rare
4

Similar Publications

We developed a systematic polarizable force field for molten trivalent rare-earth chlorides, from lanthanum to europium, based on first-principle calculations. The proposed model was employed to investigate the local structure and physicochemical properties of pure molten salts and their mixtures with sodium chloride. We computed densities, heat capacities, surface tensions, viscosities, and diffusion coefficients and disclosed their evolution along the lanthanide series, filling the gaps for poorly studied elements, such as promethium and europium.

View Article and Find Full Text PDF

Dual-Response UV Radiation Detector Based on Color Switching and Photoresistance Response for UV Radiation Monitoring.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, People's Republic of China.

Ultraviolet (UV) irradiation is dangerous and can cause serious skin diseases if skin is excessively exposed to it. Thus, it is highly desirable for human health to monitor the UV radiation intensity. In this report, a flexible and stretchable dual-response UV radiation detector is reported by integrating UV-responsive color-switchable WO quantum dots (QDs) with an electrical hydrogel.

View Article and Find Full Text PDF

The use of rare earth elements has increased in recent years, leading to a rise in environmental concentrations. Despite the growth in number of studies regarding toxicity, knowledge gaps remain. For Daphnia magna, standardized test methods involve exposure periods of either 48 h or 21 days to assess toxicological effects.

View Article and Find Full Text PDF

Yttrium oxide nanoparticles (YONPs) have emerged as a promising avenue for cancer therapy, primarily due to their distinctive properties that facilitate selective targeting of cancer cells. Despite their potential, the therapeutic effects of YONPs on human epidermoid skin cancer remain largely unexplored. This study was thus conducted to investigate the impact of YONPs on both human skin normal and cancer cells, with an emphasis on assessing their cytotoxicity, genotoxicity, and the mechanisms underlying these effects.

View Article and Find Full Text PDF

Structure-Reactivity Relationship of Zeolite-Confined Rh Catalysts for Hydroformylation of Linear α-Olefins.

J Am Chem Soc

January 2025

Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China.

Substituting the molecular metal complexes used in the industrial olefin hydroformylation process is of great significance in fundamental research and practical application. One of the major difficulties in replacing the classic molecular metal catalysts with supported metal catalysts is the low chemoselectivity and regioselectivity of the supported metal catalysts because of the lack of a well-defined coordination environment of the metal active sites. In this work, we have systematically studied the influences of key factors (crystallinity, alkali promoters, etc.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!