Rational design and structural engineering of heterogeneous single-atom nanozyme for biosensing.

Biosens Bioelectron

Department of Applied Biology and Chemical Technology and the State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China. Electronic address:

Published: November 2022

Nanozymes, an emerging family of heterogeneous nanomaterials with enzyme-like characteristics, offer significant advantages as alternatives to natural enzymes for diverse biocatalytic applications. Nevertheless, the inhomogeneous configuration of nanomaterials makes it extremely challenging to develop nanozymes of desired performance and reaction mechanism. Single-atom nanozymes (SAzymes) that are composed of single-atomic active sites may provide an answer to these challenges with remarkable enzyme-like activity and specificity. The well-defined coordination microenvironments of SAzymes offer a suitable model system to investigate the structure-activity relationship and thus bridge the gap between natural enzyme and nanozyme. In this review, we would first present an overview of discoveries, advantages, and classifications of SAzymes. Then, we would discuss the reaction mechanism, design principles, and biosensing applications of a series of typical SAzymes with a focus on the rational design strategies for targeted reaction and the effort to uncover the catalytic mechanism at the atomic scale. Finally, we would provide the challenges and future perspectives of SAzymes as the next-generation nanozymes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2022.114662DOI Listing

Publication Analysis

Top Keywords

rational design
8
reaction mechanism
8
sazymes
5
design structural
4
structural engineering
4
engineering heterogeneous
4
heterogeneous single-atom
4
single-atom nanozyme
4
nanozyme biosensing
4
nanozymes
4

Similar Publications

Characterization of pharmaceutical services in the prison system: cross-sectional study.

Cien Saude Colet

January 2025

Programa de Pós-Graduação em Assistência Farmacêutica, Universidade Federal do Rio Grande do Sul. R. São Luís 150, Santana. 90620-170 Porto Alegre RS Brasil.

Article Synopsis
  • The study assessed the organization and infrastructure of pharmaceutical services in the prison system of Rio Grande do Sul, identifying major deficiencies in the primary health care framework.
  • Most prison units lacked designated pharmacy areas and standardized procedures, with 78.4% reporting no operational guidelines for pharmacy activities.
  • Only a small percentage had a pharmacist on site, and many did not adequately monitor medication storage conditions or have proper medication dispensing processes in place, highlighting significant weaknesses in the system.
View Article and Find Full Text PDF

Phase-Engineered ZrO for Tuning Catalytic Oxidation of Dichloromethane Over W/ZrO:Zr-Doped WO Clusters and the Hydrolysis-Oxidation Mechanism.

Environ Sci Technol

January 2025

State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China.

Catalytic elimination through an oxidative decomposition pathway is the most promising candidate for the purification of chlorinated volatile organic compound (CVOC) pollutants, but the complicated mechanisms and the formation pathways of hydrogenated byproducts still need to be clearly revealed. Herein, W/ZrO, as a structure-tunable catalyst, is used to catalytically oxidize dichloromethane (DCM) and clarify the formation pathway of monochloromethane (MCM). Crystal engineering of ZrO tailors surface WO species; practically, the predominant Zr-WO clusters and crystalline WO can be obtained on monoclinic (m-ZrO) and tetragonal (t-ZrO) phases.

View Article and Find Full Text PDF

Computational Methods for Modeling Lipid-Mediated Active Pharmaceutical Ingredient Delivery.

Mol Pharm

January 2025

Regional Center of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic.

Lipid-mediated delivery of active pharmaceutical ingredients (API) opened new possibilities in advanced therapies. By encapsulating an API into a lipid nanocarrier (LNC), one can safely deliver APIs not soluble in water, those with otherwise strong adverse effects, or very fragile ones such as nucleic acids. However, for the rational design of LNCs, a detailed understanding of the composition-structure-function relationships is missing.

View Article and Find Full Text PDF

Electrochemical water splitting is a promising method for generating green hydrogen gas, offering a sustainable approach to addressing global energy challenges. However, the sluggish kinetics of the anodic oxygen evolution reaction (OER) poses a great obstacle to its practical application. Recently, increasing attention has been focused on introducing various external stimuli to modify the OER process.

View Article and Find Full Text PDF

Geometries and electronic structures of planar and quasi-planar boron clusters resemble those of aromatic hydrocarbons, providing opportunities for designing novel nonlinear optical materials. However, the nonlinear optical properties, optical-response mechanisms, and optimal optical-response geometries of boron clusters remain unclear. Accordingly, this study addresses these uncertainties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!