Text-to-image synthesis is a fundamental and challenging task in computer vision, which aims to synthesize realistic images from given descriptions. Recently, text-to-image synthesis methods have achieved great improvements in the quality of synthesized images. However, very few works have explored its application in the scenario of face synthesis, which is of great potentials in face-related applications and the public safety domain. On the other side, the faces generated by existing methods are generally of poor quality and have low consistency to the given text. To tackle this issue, in this paper, we build a novel end-to-end dual-channel generator based generative adversarial network, named DualG-GAN, to improve the quality of the generated images and the consistency to the text description. In DualG-GAN, to improve the consistency between the synthesized image and the input description, a dual-channel generator block is introduced, and a novel loss is designed to improve the similarity between the generated image and the ground-truth in three different semantic levels. Extensive experiments demonstrate that DualG-GAN achieves state-of-the-art results on SCU-Text2face dataset. To further verify the performance of DualG-GAN, we compare it with the current optimal methods on text-to-image synthesis tasks, where quantitative and qualitative results show that the proposed DualG-GAN achieves optimal performance in both Fréchet inception distance (FID) and R-precision metrics. As only a few works are focusing on text-to-face synthesis, this work can be seen as a baseline for future research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neunet.2022.08.016 | DOI Listing |
Nat Commun
January 2025
Institute of Electromagnetic Space, Southeast University, Nanjing, China.
Holographic multiple-input multiple-output (MIMO) method leverages spatial diversity to enhance the performance of wireless communications and is expected to be a key technology enabling for high-speed data services in the forthcoming sixth generation (6G) networks. However, the antenna array commonly used in the traditional massive MIMO cannot meet the requirements of low cost, low complexity and high spatial resolution simultaneously, especially in higher frequency bands. Hence it is important to achieve a feasible hardware platform to support theoretical study of the holographic MIMO communications.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, China.
Photosensitizers (PSs) featuring type I reactive oxygen species (ROS) generation and aggregation-induced emission (AIE) activity offer a promising solution to achieve non-invasive and precise theranostics. However, the reported AIE luminogens (AIEgens) with both AIE characteristic and strong type-I ROS generation are still scarce and the structure-property relationship is still unclear. Herein, an innovative acceptor elongation boosted intersystem crossing (AEBIC) design strategy has been proposed to endow the AIEgen strong type-I ROS producibility.
View Article and Find Full Text PDFNano Lett
January 2025
National Key Laboratory of Uranium Resources Exploration-Mining and Nuclear Remote Sensing, East China University of Technology, Nanchang 330013, China.
Efficient sacrificial-agent-free photosynthesis of HO from air and water represents the greenest, lowest-cost, most real-time avenue for HO production but remains a challenging issue. Here, we show a general and effective approach through a structural design on covalent organic frameworks (COFs) with asymmetric dual-function hybrid linkages for boosting the HO photosynthesis of the COFs. Through such design we can equip a COF with not only a catalytic active center but also a special function for isolating the D-A motif, which consequently endows the COF (CI-COF) built on asymmetric dual-function hybrid linkages with a significantly enhanced efficiency in the generation, transmission, and separation of photogenerated carriers, relative to the COF (II-COF and CC-COF) built on symmetric single-function single linkages.
View Article and Find Full Text PDFA 1645 nm end-pumped dual-channel Er:YAG vector laser that could generate two cylindrical vector (CV) beams simultaneously with different polarization orders is demonstrated. The laser is designed in a two-arm structure, wherein each arm places a q-plate (QP) to introduce intra-cavity spin-orbital angular momentum conversion, leading to the oscillation of two various CV modes in two arms, and finally output along two directions, respectively. The favorable experimental results illustrate high power stability and polarization mode purity.
View Article and Find Full Text PDFSTAR Protoc
January 2025
Department of Experimental Vascular Medicine, Amsterdam UMC, location AMC, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands; Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, VIB, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000 Leuven, Belgium. Electronic address:
The endothelium is the gatekeeper of vessel health, and its dysfunction is pivotal in driving atherogenesis. Here, we present a protocol to replicate endothelial-macrophage crosstalk during atherogenesis, called the "atherogenesis-on-chip" model, based on the Emulate dual-channel perfusion system. We describe a model for studying endothelial-macrophage interactions during atherogenesis in human aortic endothelial cells and human macrophages using qPCR and secretome analysis, fluorescence microscopy, and flow cytometry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!