A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Absorption of iron from Tegillarca granosa using an in vitro simulated digestion and Caco-2/HepG2 co-culture system. | LitMetric

AI Article Synopsis

  • The study investigated the iron absorption capabilities of hemoglobin and ferritin from the shellfish Tegillarca granosa, which showed promising results compared to human proteins.
  • The research found that hemoglobin had higher digestibility and iron release, offering 26.10-39.31% more iron absorption than ferritin, largely influenced by hepcidin levels.
  • Additionally, both hemoglobin and ferritin demonstrated a lower risk of oxidative stress compared to traditional iron supplements, highlighting their potential as safe and effective iron sources.

Article Abstract

Background: Iron-deficiency anemia is one severe micronutrient malnutrition and has captured worldwide attention. This study evaluated the in vitro iron absorption of two iron-binding proteins (hemoglobin and ferritin) from Tegillarca granosa. In addition, the protein structure-iron absorption relationship and the regulatory effect of hepcidin on cellular iron absorption were explored.

Results: Our findings revealed that both hemoglobin and ferritin extracted from T. granosa contained abundant iron-binding sites, as evidenced by stronger peaks in amide I and II regions compared with the two proteins from humans. Less β-sheet (27.67%) structures were found in hemoglobin compared with ferritin (36.40%), probably contributing to its greater digestibility and more release of available iron. This was confirmed by the results of Caco-2/HepG2 cell culture system that showed iron absorption of hemoglobin was 26.10-39.31% higher than that of ferritin with an iron content of 50-150 μmol L . This high iron absorption of hemoglobin (117.86-174.10 ng mg ) could also be due to more hepcidin produced by HepG2 cells, thereby preventing ferroportin-mediated iron efflux from Caco-2 cells. In addition, the possible risk of oxidative stress was evaluated in cells post-iron exposure. In comparison with ferrous sulfate, a common iron supplement, Caco-2 cells treated with the iron-binding proteins had a 9.50-25.73% lower level of intracellular reactive oxygen species, indicating the safety of hemoglobin and ferritin.

Conclusion: Collectively, the data of this research would be helpful for understanding the key features and potential of developing hemoglobin and ferritin from T. granosa as novel iron supplements. © 2022 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jsfa.12200DOI Listing

Publication Analysis

Top Keywords

iron absorption
16
hemoglobin ferritin
12
iron
9
tegillarca granosa
8
iron-binding proteins
8
absorption hemoglobin
8
caco-2 cells
8
hemoglobin
7
absorption
6
ferritin
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!