A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhancement of instrumented ultrasonic tracking images using deep learning. | LitMetric

Enhancement of instrumented ultrasonic tracking images using deep learning.

Int J Comput Assist Radiol Surg

Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, W1W 7TY, UK.

Published: February 2023

Purpose: Instrumented ultrasonic tracking provides needle localisation during ultrasound-guided minimally invasive percutaneous procedures. Here, a post-processing framework based on a convolutional neural network (CNN) is proposed to improve the spatial resolution of ultrasonic tracking images.

Methods: The custom ultrasonic tracking system comprised a needle with an integrated fibre-optic ultrasound (US) transmitter and a clinical US probe for receiving those transmissions and for acquiring B-mode US images. For post-processing of tracking images reconstructed from the received fibre-optic US transmissions, a recently-developed framework based on ResNet architecture, trained with a purely synthetic dataset, was employed. A preliminary evaluation of this framework was performed with data acquired from needle insertions in the heart of a fetal sheep in vivo. The axial and lateral spatial resolution of the tracking images were used as performance metrics of the trained network.

Results: Application of the CNN yielded improvements in the spatial resolution of the tracking images. In three needle insertions, in which the tip depth ranged from 23.9 to 38.4 mm, the lateral resolution improved from 2.11 to 1.58 mm, and the axial resolution improved from 1.29 to 0.46 mm.

Conclusion: The results provide strong indications of the potential of CNNs to improve the spatial resolution of ultrasonic tracking images and thereby to increase the accuracy of needle tip localisation. These improvements could have broad applicability and impact across multiple clinical fields, which could lead to improvements in procedural efficiency and reductions in risk of complications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9889406PMC
http://dx.doi.org/10.1007/s11548-022-02728-7DOI Listing

Publication Analysis

Top Keywords

ultrasonic tracking
20
tracking images
20
spatial resolution
16
instrumented ultrasonic
8
tracking
8
needle localisation
8
framework based
8
improve spatial
8
resolution ultrasonic
8
needle insertions
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!