Ethnopharmacological Relevance: Traditional Chinese medicine (TCM) has a wide range of applications, including human healthcare-associated treatments and bioactive compound discovery. However, complex chemical systems present a significant challenge for chemical-material-based research and quality control. For instance, Banlangen (BLG) granules is a well-acknowledged TCM preparation widely used in clinical treatment of virus infection. However, its chemical basis of anti-influenza efficacy remains unclear.
Aim Of The Study: In the present study, a systematic discovery strategy for identifying anti-influenza molecules based on biological activities and chemical analysis was established to contribute to the molecular elucidation of the anti-influenza material basis of Banlangen granules.
Materials And Methods: Hemagglutinase inhibition (HAI) and neuraminidase inhibition (NAI) assays were used to compare the anti-influenza activities of different fractions of BLG granules against H1N1, H5N1 and H7N9 viruses. A comparative qualitative analysis of the chemical constituents in BLG granules and their fractions was performed using ultra-high-performance liquid chromatography coupled with quadrupole orbitrap mass spectrometry (UHPLC-Q-Exactive Orbitrap MS), in which a multiple mass spectrometry database platform and three compound identification strategies were used. The association between anti-influenza activities and chemical constituent characteristics was analyzed using multiple stoichiometries and data comparison strategies.
Results: The results showed that the chromatography fractions F3 and F4 of the BLG granules had the highest anti-influenza activity. A total of 88 compounds were identified in the BLG granules, including 31 alkaloids, 16 organic acids, 10 nucleosides, 8 phenylpropanoids, 6 sulfur-containing compounds, 5 amino acids, 4 aromatic compounds, 3 aldehydes and ketones, 2 flavonoids, 1 alcohol, 1 carbohydrate, and 1 aliphatic compound. Out of these, 31 characteristic compounds were identified in fractions F3-F4 as candidate compounds with anti-influenza activity. Additionally, 6-methoxyquinoline and 4-guanidinobutanal were identified in BLG granules and its raw material (Isatidis Radix) for the first time.
Conclusion: In this study, we proposed a systematic discovery strategy to thoroughly investigate the anti-influenza activity, chemical identification, and constituents-activity relationship of BLG granules. These data not only provided a deeper understanding of the molecular mechanism of the activity of BLG granules, but also presented a basis for the discovery of potential novel drug candidates and quality evaluation and control of BLG granules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jep.2022.115683 | DOI Listing |
J Ethnopharmacol
January 2024
State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China. Electronic address:
Ethnopharmacological Relevance: The Antiviral Granules (AG) are derived from the classical famous prescription, which is composed of 9 traditional Chinese medicines, namely Radix Isatidis (called Banlangen, BLG in Chinese), Forsythiae Fructus (called Lianqiao, LQ in Chinese), Gypsum fibrosum, Anemarrhenae Rhizoma (called Zhimu, ZM in Chinese), Phragmitis Rhizoma (called Lugen, LG in Chinese), Rehmanniae Radix (called Dihuang, DH in Chinese), Pogostemonis Herba (called Guanghuoxiang, GHX in Chinese), Acori Tatarinowii Rhizoma (called Shichangpu, SCP in Chinese), and Curcumae Radix (called Yujin, YJ in Chinese), and has shown an excellent therapeutic effect in clinical treatment of influenza. However, there are few studies on the anti-influenza mechanism of AG, and the mechanism of action is still unclear.
Aim Of The Study: The purpose is to provide the latest information about the clinical efficacy, pharmacodynamic composition and mechanism of AG based on scientific literature, so as to enhance the utilization of AG in the treatment of influenza and related diseases, and promote the development and innovation of novel anti-influenza drugs targeting the influenza virus.
J Ethnopharmacol
November 2022
Guangzhou Baiyunshan Hutchison Whampoa Chinese Medicine Co., Ltd., Guangzhou, PR China. Electronic address:
Ethnopharmacological Relevance: Traditional Chinese medicine (TCM) has a wide range of applications, including human healthcare-associated treatments and bioactive compound discovery. However, complex chemical systems present a significant challenge for chemical-material-based research and quality control. For instance, Banlangen (BLG) granules is a well-acknowledged TCM preparation widely used in clinical treatment of virus infection.
View Article and Find Full Text PDFJ Inflamm Res
February 2022
School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, People's Republic of China.
Purpose: GLP-1 based therapy represents a new treatment option for inflammatory bowel disease. Ban-Lan-Gen (BLG) granule, a known anti-viral TCM formulation, exhibits potential anti-inflammatory activities in treating various kinds of inflammation. However, its anti-inflammatory effect on colitis and the underlying mechanisms remain unknown.
View Article and Find Full Text PDFChem Biodivers
September 2019
School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China.
Bawei Longzuan granule (BLG) is a representative Zhuang medicine preparation. The present work aims to characterize the chemical constituents of BLG and evaluate its anti-arthritic activity. The major chemical constituents of BLG were tentatively identified by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS), which revealed the presence of some alkaloids (e.
View Article and Find Full Text PDFLancet HIV
December 2018
Department of Pediatrics, Jacobi Medical Center, New York, NY, USA.
Background: Raltegravir is an integrase inhibitor approved for use in adults and children with HIV-1 infection, but there are no data on the long-term use of this medication in children. We aimed to assess the long-term safety, tolerability, pharmacokinetics, and efficacy of multiple raltegravir formulations in children aged 4 weeks to 18 years with HIV-1 infection.
Methods: In this phase 1/2 open-label multicentre trial (IMPAACT P1066), done in 43 IMPAACT network sites in the USA, South Africa, Brazil, Botswana, and Argentina, eligible participants were children aged 4 weeks to 18 years with HIV-1 infection who had previously received antiretroviral therapy (ART), had HIV-1 RNA higher than 1000 copies per mL, and no exposure to integrase inhibitors.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!