In Situ Spontaneous Fabrication of Tough and Stretchable Polyurethane-Polyethyleneimine Hydrogels Selectively Triggered by CO.

Macromol Rapid Commun

Biomedical and Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea.

Published: November 2022

CO -triggered in situ hydrogels is developed from waterborne poly(ε-caprolactone)-based polyurethane (PU) dispersion and aqueous polyethyleneimine (PEI) solution without any other chemicals and apparatus (e.g., UV light). In the approach, nontoxic CO in air is used as a selective trigger for the hydrogel formation. CO adsorption onto PEI results in the formation of ammonium cations in PEI and the subsequent multiple ionic crosslinking between PU and PEI chains. Besides the amount of CO in air, the rate of hydrogel formation can be controlled by NaHCO in the PU-PEI mixture, which serves as a CO supplier. The PU hydrogels exhibit tough and stretchable properties with high tensile strength (2.05 MPa) and elongation at break (438.24%), as well as biocompatibility and biodegradability. In addition, the PU hydrogels exhibit high adhesion strength on skin and injectability due to the in situ formation. It is believed that these PU hydrogels have the ideal features for various future applications, such as tissue adhesion barriers, wound dressing, artificial skin, and injectable fillers.

Download full-text PDF

Source
http://dx.doi.org/10.1002/marc.202200423DOI Listing

Publication Analysis

Top Keywords

tough stretchable
8
hydrogel formation
8
hydrogels exhibit
8
hydrogels
5
situ spontaneous
4
spontaneous fabrication
4
fabrication tough
4
stretchable polyurethane-polyethyleneimine
4
polyurethane-polyethyleneimine hydrogels
4
hydrogels selectively
4

Similar Publications

A Wireless Health Monitoring System Accomplishing Bimodal Decoupling Based on an "IS"-Shaped Multifunctional Conductive Hydrogel.

Small

January 2025

Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710127, China.

Flexible wearable sensors with bimodal functionality offer substantial value for human health monitoring, as relying on a single indicator is insufficient for capturing comprehensive physiological information. However, bimodal sensors face multiple challenges in practical applications, including mutual interference between various modalities, and integration of excellent mechanical properties, interfacial adhesion, environmental adaptability and biocompatibility. Herein, the multifunctional hydrogel, synthesized through radical grafting and supramolecular self-crosslinking reactions, exhibits excellent thermal sensitivity (TCR = -1.

View Article and Find Full Text PDF

Elastic, strong and tough ionically conductive elastomers.

Nat Commun

January 2025

Laboratoire Sciences et Ingénierie de la Matiére Molle, ESPCI Paris, CNRS, PSL University, Paris, France.

Stretchable elastic materials with high strength, toughness, and good ionic conductivity are highly desirable for wearable devices and stretchable batteries. Unfortunately, limited success has been reported to attain all of these properties simultaneously. Here, we report a family of ionically conductive elastomers (ICEs) without compromise between mechanical properties (high stiffness, reversible elasticity, fracture resistance) and ionic conductivity, by introducing a multiple network elastomer (MNE) architecture into a low polymer.

View Article and Find Full Text PDF

Cellulose nanofibril enhanced ionic conductive hydrogels with high stretchability, high toughness and self-adhesive ability for flexible strain sensors.

Int J Biol Macromol

December 2024

State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China. Electronic address:

Preparation of ion-conductive hydrogels with excellent mechanics, good conductivity and adhesiveness is promising for flexible sensors, but remains a challenge. Here, we prepare a self-adhesive and ion-conductive hydrogel by introducing cellulose nanofibers (CNF) and ZnSO into a covalently-crosslinked poly (acrylamide-co-2-acrylamide-2-methyl propane sulfonic acid) (P(AM-co-AMPS)) network. Owing to the hydrogen bonding and metal coordination interactions among P(AM-co-AMPS) chains, CNF, and Zn, the resulting P(AM-co-AMPS)/CNF/ZnSO hydrogel exhibits high stretchability (1092 %), high toughness (244 kJ m), and skin-like elasticity (3.

View Article and Find Full Text PDF

Conductive hydrogels have great potential for applications in flexible wearable sensors due to the combination of biocompatibility, mechanical flexibility and electrical conductivity. However, constructing conductive hydrogels with high toughness, low hysteresis and skin-like modulus simultaneously remains challenging. In the present study, we prepared a tough and conductive polyacrylamide/pullulan/ammonium sulfate hydrogel with a semi-interpenetrating network.

View Article and Find Full Text PDF

Hydrogels present significant potential in flexible materials designed for electromagnetic interference (EMI) shielding, attributed to their soft, stretchable mechanical properties and water-rich porous structures. Unfortunately, EMI shielding hydrogels commonly suffer from low mechanical properties, deficient fracture energy, and low strength, which limit the serviceability of these materials in complex mechanical environments. In this study, the double network strategy is successfully utilized along with the Hofmeister effect to create MXene/PAA (polyacrylic acid)-CS (chitosan) hydrogels and further strengthen and toughen the gel with (NH)SO solution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!