The thermoneutral zone (TNZ) reflects the adaptation of mammals to their natural habitat. However, it remains unclear how TNZ shifts in response to variations in ambient temperature. To test the hypothesis that ambient temperature plays a key role in determining TNZ variations between seasons, we measured metabolic rate, body temperature, and cytochrome c oxidase (COX) activity of several visceral organs in striped hamsters (Cricetulus barabensis) either acclimated to semi-natural conditions over a year, or subjected to a gradual decrease in mean temperature from 30 ± 1°C to -15 ± 1°C. The TNZ range in striped hamsters differed seasonally, with a wider TNZ and a lower lower-critical temperature in winter compared to summer. The hamsters showed a considerable leftward shift of lower-critical temperature from 30°C to 20°C after the ambient temperature of acclimation from 30°C down to -15°C, whereas the upper-critical temperature of TNZ remained fixed at 32.5°C. The resting metabolic rate in thermoneutral zone (RMRt), nonshivering thermogenesis (NST), and COX activity of brown adipose tissue, liver, skeletal muscle, brain, and kidneys, increased significantly in hamsters acclimated at lower ambient temperatures. Following acute exposure to 5°C and -15°C, hamsters acclimated to 32.5°C had significantly lower maximal NST and lower serum thyroid tri-iodothyronine (T ) levels compared to those kept at 23°C. These findings suggest that acclimation to the upper-critical temperature of TNZ impairs the hamsters' thermogenic capacity to cope with extreme cold temperature. Reduced ambient temperature was mainly responsible for the leftward shift of TNZ in striped hamsters, which reflects the adaptation to cold environments.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1749-4877.12678DOI Listing

Publication Analysis

Top Keywords

striped hamsters
16
ambient temperature
16
temperature
12
thermogenic capacity
8
thermoneutral zone
8
tnz
8
reflects adaptation
8
metabolic rate
8
cox activity
8
lower-critical temperature
8

Similar Publications

Metabolism and immune responses of striped hamsters to ectoparasite challenges: insights from transcriptomic analysis.

Front Immunol

December 2024

National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.

Introduction: The striped hamster, often parasitized by ectoparasites in nature, is an ideal model for studying host-ectoparasite molecular interactions. Investigating the response to ectoparasites under laboratory conditions helps elucidate the mechanism of host adaptations to ectoparasite pressure.

Methods: Using transcriptome sequencing, we analyzed gene expression in striped hamsters after short-term (3 days) and long-term (28 days) flea () parasitism.

View Article and Find Full Text PDF

Body size influences the capacity to cope with extreme cold or hot temperatures in the striped hamster.

J Therm Biol

December 2024

College of Life and Environmental Science, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China. Electronic address:

Body size of organisms is a key trait influencing nearly all aspects of their life history. Despite growing evidence of Bergmann's rule, there is considerably less known about the links between body size and the maximum capacity to thermoregulate of an animal in response to extreme cold or hot environment. Thermal characteristics such as resting metabolic rate (RMR) and non-shivering thermogenesis (NST), and the upper- and lower-critical temperatures of the thermal neutral zone (TNZ) were investigated in small and large body sized striped hamsters (Cricetulus barabensis).

View Article and Find Full Text PDF

The role of miRNAs in the regulation of seasonal reproduction in rodents, particularly in relation to photoperiod changes, is still poorly understood. Previous studies on miRNA transcriptomes of striped hamster (Cricetulus barabensis) testes have indicated that the photoperiodism of testes, especially apoptosis, may be influenced by miRNAs. As a functional miRNA, cba-miR-222-3p in striped hamster testes exhibits suppression under a short photoperiod.

View Article and Find Full Text PDF

The Chinese hamster as an excellent experimental animal model.

Exp Anim

January 2025

The Laboratory Animal Center, Shanxi Medical University, No 56 Xinjian South Road, Taiyuan 030001, P.R. China.

Hamsters are valuable rodent models that are distinct from mice and rats. Currently, the main hamster species used for experimental research are the Syrian golden hamster and Chinese hamster, in addition to hamster species from other countries. Chinese hamsters are small, easy to run and feed, and inexpensive.

View Article and Find Full Text PDF

Lactating striped hamsters (Cricetulus barabensis) do not decrease the thermogenic capacity to cope with extreme cold temperature.

Zoology (Jena)

September 2024

College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China. Electronic address:

For small non-hibernating mammals, a high thermogenic capacity is important to increase activity levels in the cold. It has been previously reported that lactating females decrease their thermogenic activity of brown adipose tissue (BAT), whereas their capacity to cope with extreme cold remains uncertain. In this study we examined food intake, body temperature and locomotor behavior, resting metabolic rate, non-shivering thermogenesis, and cytochrome c oxidase activity, and the rate of state 4 respiration of liver, skeletal muscle, and BAT in striped hamsters (Cricetulus barabensis) at peak lactation and non- breeding hamsters (controls).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!