Understanding the response of predators to ecological change at multiple temporal scales can elucidate critical predator-prey dynamics that would otherwise go unrecognized. We performed compound-specific nitrogen stable isotope analysis of amino acids on 153 harbor seal museum skull specimens to determine how trophic position of this marine predator has responded to ecosystem change over the past century. The relationships between harbor seal trophic position, ocean condition, and prey abundance, were analyzed using hierarchical modeling of a multi-amino-acid framework and applying 1, 2, and 3 years temporal lags. We identified delayed responses of harbor seal trophic position to both physical ocean conditions (upwelling, sea surface temperature, freshwater discharge) and prey availability (Pacific hake, Pacific herring, and Chinook salmon). However, the magnitude and direction of the trophic position response to ecological changes depended on the temporal delay. For example, harbor seal trophic position was negatively associated with summer upwelling but had a 1-year delayed response to summer sea surface temperature, indicating that some predator responses to ecosystem change are not immediately observable. These results highlight the importance of considering dynamic responses of predators to their environment as multiple ecological factors are often changing simultaneously and can take years to propagate up the food web.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ecy.3865 | DOI Listing |
Biology (Basel)
December 2024
School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
In seasonally stratified marine environments, the dynamics of benthic-pelagic coupling plays a crucial role in shaping food web structures and fisheries production. We examined fish food web structures across three distinct shelf areas in the Southern Sea of Korea (SSK) during both stratified (summer) and mixed (spring) water conditions using stable isotopes of carbon (δC) and nitrogen (δN). In spring, fish communities exhibited a broader range of δC values compared with summer, indicating more diverse feeding strategies.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Olaf Malm Laboratory of Environmental Studies (LEA-OM), Carlos Chagas Filho Biophysics Institute (IBCCF), Federal University of Rio de Janeiro (UFRJ), 21941-902, Rio de Janeiro, Brazil; Laboratory of Oceanology, Freshwater and Oceanic Sciences Unit of Research (FOCUS), University of Liege, Belgium.
This study investigates essential (Mg, Ca, Fe, Mn, Cu, Zn, Se, Ni) and non-essential (Li, Be, Cr, Rb, Sr, Cs, Cd, Sn, Ba, and Pb) element concentrations and stable isotope (δC, δN, δS) compositions in feathers of Brown Boobies (Sula leucogaster) from three distinct Atlantic islands: the Archipelagos of Saint Peter and Saint Paul (SPSP), Abrolhos, and Cagarras. We aimed to investigate the ecological and environmental factors influencing these seabird populations and assess potential variations in contaminant exposure and dietary habits based on location, sex, and maturity stages. Our finding revealed significant geographical differences in trace element concentrations.
View Article and Find Full Text PDFPLoS One
January 2025
UMR CRBE (Center for Research on Biodiversity and Environment), CNRS5300, IRD, INP, UPS, Université Paul Sabatier, Toulouse, France.
The introduction of non-native fish species into new environments has raised global concerns due to potential ecological impacts on recipient ecosystems. A previous study focusing on the introduced fish species Arapaima gigas in Bolivian Amazon waters showed that its isotopic niche significantly overlapped with most co-occurring native fish species, suggesting potential competition. To evaluate this hypothesis, we extended here the investigation by comparing the trophic position and isotopic niche width of eleven abundant native fish species inhabiting both colonized and non-colonized floodplain lakes.
View Article and Find Full Text PDFMar Pollut Bull
December 2024
Department of Biology and Wildlife, University of Alaska Fairbanks, 2090 Koyukuk Dr, Fairbanks, AK 99775, USA; Institute of Arctic Biology, University of Alaska Fairbanks, 2140 Koyukuk Dr, Fairbank, AK 99775, USA.
Several wildlife species exhibit marked spatial variation in toxicologically relevant tissue concentrations of mercury across the Aleutian Islands of Alaska, most notably the endangered Steller sea lion (Eumetopias jubatus). To unravel potential environmental and trophic pathways driving mercury variation in this species of concern, we investigated spatiotemporal and ecological patterns in total mercury concentrations and stable isotope ratios of carbon and nitrogen from muscle tissues of twelve mid-trophic level prey species of the region (n = 1461). Dividing samples into island groups explained biogeochemical variation better than larger spatial resolutions, with Amchitka Pass and Buldir Pass acting as strong geographic break points.
View Article and Find Full Text PDFThe conversion of tropical rainforests to agriculture causes population declines and biodiversity loss across taxa. This impacts ants (Formicidae), a crucial tropical group for ecosystem functioning. While biodiversity loss among ants is well documented, the responses of individual ant taxa and their adjustments in trophic strategies to land-use change are little studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!