Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Acoustic radiation force plays a key role in microfluidic systems for particle and cell manipulation. In this study, we investigate the acoustic radiation force resulting from synthesized ultrasounds that are emitted from multiple sound sources with slightly different oscillation frequencies. Due to the synthesized field, the acoustic radiation force is expressed as the sum of a dc component and harmonics of fundamental frequencies of a few hertz. This induces the beat of the acoustic radiation force. We demonstrate that the synthesized field provides the periodic on/off switching of the acoustic radiation force associated with the one denominational planar standing wave in a straight microfluidic channel. Consequently, our system can temporally manipulate acoustic radiation force without active controls.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9440119 | PMC |
http://dx.doi.org/10.1038/s41598-022-19077-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!