Complex brain networks play a central role in integrating activity across the human brain, and such networks can be identified in the absence of any external stimulus. We performed 10 genome-wide association studies of resting state network measures of intrinsic brain activity in up to 36,150 participants of European ancestry in the UK Biobank. We found that the heritability of global network efficiency was largely explained by blood oxygen level-dependent (BOLD) resting state fluctuation amplitudes (RSFA), which are thought to reflect the vascular component of the BOLD signal. RSFA itself had a significant genetic component and we identified 24 genomic loci associated with RSFA, 157 genes whose predicted expression correlated with it, and 3 proteins in the dorsolateral prefrontal cortex and 4 in plasma. We observed correlations with cardiovascular traits, and single-cell RNA specificity analyses revealed enrichment of vascular related cells. Our analyses also revealed a potential role of lipid transport, store-operated calcium channel activity, and inositol 1,4,5-trisphosphate binding in resting-state BOLD fluctuations. We conclude that that the heritability of global network efficiency is largely explained by the vascular component of the BOLD response as ascertained by RSFA, which itself has a significant genetic component.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9440133PMC
http://dx.doi.org/10.1038/s41598-022-19106-7DOI Listing

Publication Analysis

Top Keywords

vascular component
12
global network
12
network efficiency
12
genome-wide association
8
human brain
8
brain networks
8
resting state
8
heritability global
8
efficiency explained
8
component bold
8

Similar Publications

Gestational diabetes mellitus (GDM), a transient form of diabetes that resolves postpartum, is a major risk factor for type 2 diabetes (T2D) in women. While the progression from GDM to T2D is not fully understood, it involves both genetic and environmental components. By integrating clinical, metabolomic, and genome-wide association study (GWAS) data, we identified associations between decreased sphingolipid biosynthesis and future T2D, in part through the allele of the gene in Hispanic women shortly after a GDM pregnancy.

View Article and Find Full Text PDF

Background: The arterial stiffening is attributed to the intrinsic structural stiffening and/or load-dependent stiffening by increased blood pressure (BP). The respective lifetime alterations and major determinants of the two components with normal aging are not clear.

Methods: A total of 3053 healthy adults (1922 women) aged 18-79 years were enrolled.

View Article and Find Full Text PDF

Chronic hard-to-heal wounds pose a significant threat to patients' health and quality of life, and their clinical management remains a challenge. Adipose-derived stem cell exosomes (ADSC-exos) have shown promising results in promoting diabetic wound healing. However, effectively enhancing the retention of exosomes in wounds for treatment remains a key issue that needs to be addressed.

View Article and Find Full Text PDF

This study evaluates the efficacy of deep learning models in identifying infarct tissue on computed tomography perfusion (CTP) scans from patients with acute ischemic stroke due to large vessel occlusion, specifically addressing the potential influence of varying noise reduction techniques implemented by different vendors. We analyzed CTP scans from 60 patients who underwent mechanical thrombectomy achieving a modified thrombolysis in cerebral infarction (mTICI) score of 2c or 3, ensuring minimal changes in the infarct core between the initial CTP and follow-up MR imaging. Noise reduction techniques, including principal component analysis (PCA), wavelet, non-local means (NLM), and a no denoising approach, were employed to create hemodynamic parameter maps.

View Article and Find Full Text PDF

Defining Thresholds for Meaningful Health Status Changes Following Transfemoral Carotid Artery Stenting.

Catheter Cardiovasc Interv

January 2025

Department of Internal Medicine, Vascular Medicine Outcomes Program (VAMOS), Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, Connecticut, USA.

Background: Evaluating health status changes following transfemoral carotid artery stenting (TF-CAS) is essential for assessing procedural success, but meaningful clinical changes are unknown. We aimed to determine minimal clinically important differences (MCIDs) and quantify health status improvement or worsening rates after TF-CAS using the Stenting and Angioplasty with Protection in Patients at High Risk for Endarterectomy (SAPPHIRE) registry data.

Methods: The SAPPHIRE registry included patients undergoing TF-CAS from 2010 to 2014 for both symptomatic and asymptomatic carotid stenosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!