Immense effort has been exerted in the materials informatics community towards enhancing the accuracy of machine learning (ML) models; however, the uncertainty quantification (UQ) of state-of-the-art algorithms also demands further development. Most prominent UQ methods are model-specific or are related to the ensembles of models; therefore, there is a need to develop a universal technique that can be readily applied to a single model from a diverse set of ML algorithms. In this study, we suggest a new UQ measure known as the Δ-metric to address this issue. The presented quantitative criterion was inspired by the k-nearest neighbor approach adopted for applicability domain estimation in chemoinformatics. It surpasses several UQ methods in accurately ranking the predictive errors and could be considered a low-cost option for a more advanced deep ensemble strategy. We also evaluated the performance of the presented UQ measure on various classes of materials, ML algorithms, and types of input features, thus demonstrating its universality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9440040PMC
http://dx.doi.org/10.1038/s41598-022-19205-5DOI Listing

Publication Analysis

Top Keywords

uncertainty quantification
8
universal similarity
4
similarity based
4
based approach
4
approach predictive
4
predictive uncertainty
4
quantification materials
4
materials science
4
science immense
4
immense effort
4

Similar Publications

Concentrations of pollutants like pharmaceuticals in soils typically decrease over time, though it often remains unclear whether this dissipation is caused by the transformation of the pollutant or a decreasing extractability. We developed a mathematical model that (1) explores the plausibility of different dissipation pathways, and (2) allows the quantification of concentration differences between aqueous soil extracts and soil solution. The model considers soil particles as uniform spheres, kinetic sorption towards an equilibrium (Freundlich model), and two dissipation pathways, irreversible transformation and mineralization (following 1 order kinetics) as well as the formation of non-extractable residues intraparticle diffusion.

View Article and Find Full Text PDF

The integration of artificial intelligence (AI) into new approach methods (NAMs) for toxicology rep-resents a paradigm shift in chemical safety assessment. Harnessing AI appropriately has enormous potential to streamline validation efforts. This review explores the challenges, opportunities, and future directions for validating AI-based NAMs, highlighting their transformative potential while acknowledging the complexities involved in their implementation and acceptance.

View Article and Find Full Text PDF

Particle filtration efficiency (PFE) is a critical property of face masks, with the most common test methods using sodium chloride as a challenge aerosol. In the absence of bottom-up uncertainty budgets for PFE, interlaboratory comparisons provide an alternative route to robustly quantify the precision and bias of the method. This work presents the results of several interlaboratory comparisons of particle filtration efficiency performed across a network of laboratories.

View Article and Find Full Text PDF

Practical identifiability is a critical concern in data-driven modeling of mathematical systems. In this paper, we propose a novel framework for practical identifiability analysis to evaluate parameter identifiability in mathematical models of biological systems. Starting with a rigorous mathematical definition of practical identifiability, we demonstrate its equivalence to the invertibility of the Fisher Information Matrix.

View Article and Find Full Text PDF

Semi-supervised medical image segmentation via weak-to-strong perturbation consistency and edge-aware contrastive representation.

Med Image Anal

January 2025

School of Computer Science and Technology, Harbin Institute of Technology at Shenzhen, Shenzhen, 518055, China; National Key Laboratory of Smart Farm Technologies and Systems, Harbin, 150001, China. Electronic address:

Despite that supervised learning has demonstrated impressive accuracy in medical image segmentation, its reliance on large labeled datasets poses a challenge due to the effort and expertise required for data acquisition. Semi-supervised learning has emerged as a potential solution. However, it tends to yield satisfactory segmentation performance in the central region of the foreground, but struggles in the edge region.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!