Research Question: Is seminal oxidation-reduction potential (ORP) clinically relevant to reproductive outcome?
Design: Prospective observational study including a total of 144 couples who had an intracytoplasmic sperm injection (ICSI) cycle between June 2018 and December 2020. The study included patients undergoing fresh ICSI cycles with autologous gametes. Cycles that had day 3 embryo transfers and cryopreservation cycles were excluded. There was no restriction on patients with severe male infertility; couples with unexplained infertility and unexplained male infertility were included, those with azoospermia were excluded. Semen analysis, seminal ORP as determined by means of the MiOXSYS system, sperm DNA fragmentation (SDF) and reproductive outcomes (fertilization, blastocyst development, clinical pregnancy and live birth) were determined.
Results: Seminal ORP was significantly negatively correlated with fertilization rate (r = -0.267; P = 0.0012), blastocyst development rate (r = -0.432; P < 0.0001), implantation/clinical pregnancy (r = -0.305; P = 0.0003) and live birth (r = -0.366; P < 0.0001). Receiver operating characteristic curve analysis showed significant predictive power for ORP for fertilization (≥80%; area under the curve [AUC] 0.652; P = 0.0012), blastocyst development rate (≥60%; AUC 0.794; P < 0.0001), implantation/clinical pregnancy (AUC 0.680; P = 0.0002) and live birth (AUC 0.728; P < 0.0001). Comparable results were obtained for SDF (fertilization: AUC 0.678; blastocyst development: AUC 0.777; implantation/clinical pregnancy: AUC 0.665; live birth: AUC 0.723). Normal sperm morphology showed the lowest predictive power for all reproductive outcome parameters. With male age as confounding factor, ORP (cut-off value of 0.51 mV/10 sperm/ml) has significant (P < 0.04667) effects on odds ratios for all reproductive outcome parameters. Multivariate logistic regression to investigate potential seminal and female confounding factors revealed that seminal ORP significantly (P < 0.0039; P < 0.0130) affects reproductive outcome.
Conclusion: Seminal ORP is relevant for good fertilization, blastocyst development, implantation, clinical pregnancy and live birth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.rbmo.2022.05.010 | DOI Listing |
JDS Commun
January 2025
Department of Animal Sciences and D.H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32611-0910.
Pharmacological elevation of cyclic AMP (cAMP) of cultured cumulus-oocyte complexes (COC) before or coincident with initiation of maturation has been reported to improve outcomes for various systems for in vitro production of embryos. Here it was hypothesized that artificial elevation of cAMP in the oocyte for a 2-h period of prematuration would improve developmental competence of matured oocytes and result in increased blastocyst yield and altered expression of genes important for embryonic differentiation. Treated COC were cultured for 2 h with dibutyryl cAMP (dbcAMP), a membrane-permeable form of cAMP, and 3-isobutyl-1-methylxanthine (IBMX), which inhibits phosphodiesterases that convert cAMP to ATP.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China.
Blastoids-blastocyst-like structures created in vitro-emerge as a valuable model for early embryonic development research. Non-human primates stem cell-derived blastoids are an ethically viable alternative to human counterparts, yet the low formation efficiency of monkey blastoid cavities, typically below 30%, has limited their utility. Prior research has predominantly utilized embryonic stem cells.
View Article and Find Full Text PDFDifferentiation
January 2025
Yanagimachi Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, University of Hawaii John A. Burns School of Medicine, Honolulu, HI, 96813, USA. Electronic address:
The trophectoderm (TE) is the first tissue to differentiate during the preimplantation development of the mammalian embryo. It forms the outer layer of the blastocyst and is responsible for generating the blastocoel, a fluid-filled cavity whose expansion is essential for successful hatching and implantation. Here, we investigated the role of the small GTPase RHOA in the morphogenesis of the TE, particularly its relationship with HIPPO signaling, using mouse embryos as a model.
View Article and Find Full Text PDFBMC Pregnancy Childbirth
January 2025
Assisted Reproduction Center, Northwest Women's and Children's Hospital, No. 73 Houzai Gate, Xincheng District, Xi'an, 710003, Shaanxi province, People's Republic of China.
Background: Up to now, a number of studies have explored the influence of blastocyst biopsy on maternal and neonatal outcomes, and the results have been somewhat inconsistent. Therefore, the aim of this study was to investigate whether blastocyst biopsy is associated with an elevated risk of hypertensive disorders of pregnancy (HDP) and other adverse perinatal outcomes during frozen embryo transfer (FET) cycles in singleton live births resulting from intracytoplasmic sperm injection (ICSI) in women aged ≤ 35 years.
Methods: A total of 1,008 women were involved in this study from January 2020 to June 2022, who underwent ICSI cycles and received single FET, leading to the birth of a live singleton newborn.
Biol Reprod
January 2025
Department of Animal Sciences, University of Florida, Gainesville, FL 32611-0910, USA.
Optimal embryonic development depends upon cell-signaling molecules released by the maternal reproductive tract called embryokines. Identity of specific embryokines that enhance competence of the embryo for sustained survival is largely lacking. The current objective was to evaluate effects of three putative embryokines in cattle on embryonic development to the blastocyst stage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!