The composition and antiviral activity of scTRIM59 in Mandarin fish.

Fish Shellfish Immunol

Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, 510380, China. Electronic address:

Published: November 2022

The tripartite motif (TRIM) proteins play critical roles in viral infection by modulating innate immunity. However, the molecular and antiviral activity of TRIM59 in mandrain fish is not fully understood. In present study, we cloned and sequenced the TRIM59 core sequence and explored its characteristics in Mandarin fish. The Siniperca chuatsi TRIM59 (scTRIM59) showed relatively high expression in immune-related organs. scTRIM59 expression was significantly down-regulated post ISKNV infection in vivo and vitro, but up-regulated at the early stages of SCRV infection in CPB cells. The overexpression of scTRIM59 inhibited ISKNV and SCRV infection, but decreased the expression of IRF3/IRF7-mediated signal genes. However, knockdown of scTRIM59 promoted the ISKNV and SCRV infection, but increased the expression of IRF3/IRF7-mediated signal genes. Those results indicated that scTRIM59 negatively regulated ISKNV, SCRV infection and IRF3/IRF7-mediated signal genes. This study provided new ideas about the function of scTRIM59.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2022.08.068DOI Listing

Publication Analysis

Top Keywords

scrv infection
16
isknv scrv
12
irf3/irf7-mediated signal
12
signal genes
12
antiviral activity
8
mandarin fish
8
expression irf3/irf7-mediated
8
sctrim59
7
infection
6
composition antiviral
4

Similar Publications

scTRIM44 Positively Regulated Siniperca Chuatsi Rhabdovirus Through RIG-I- and MDA5-Mediated Interferon Signaling.

Viruses

December 2024

Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Key Laboratory of Fishery Drug Development, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.

Tripartite Motif-Containing 44 (TRIM44) is responsible for cancers, neurodegenerative diseases, and viral infections. However, the role of TRIM44 (scTRIM44) during viral infection remains unclear. In the present study, we analyzed the molecular characteristics of scTRIM44 and its role in infectious spleen and kidney necrosis virus (ISKNV), largemouth bass virus (LMBV), and Siniperca chuatsi rhabdovirus (SCRV) infection.

View Article and Find Full Text PDF

Strawberry viruses are significant pathogenic agents in strawberry. The development and application of efficient virus detection technology can effectively reduce the economic losses incurred by virus diseases for strawberry cultivators. In order to rapidly identify strawberry virus species and prevent the spread of virus disease, a multiplex reverse transcription polymerase chain reaction system was established for the simultaneous detection and identification of strawberry mild yellow edge virus (SMYEV), strawberry vein banding virus (SVBV), strawberry mottle virus (SMoV), strawberry polerovirus 1 (SPV-1), strawberry pallidosis-associated virus (SPaV), and strawberry crinivirus 4 (SCrV-4).

View Article and Find Full Text PDF

A Novel Protein NLRP12-119aa that Prevents Rhabdovirus Replication by Disrupting the RNP Complex Formation.

Adv Sci (Weinh)

January 2025

Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.

The accurate assembly of the ribonucleoprotein (RNP) complex is fundamental for the replication and transcription of rhabdoviruses, which are known for their broad pathogenic impact. A novel 119-amino-acid protein, NLRP12-119aa is identified, encoded by the circular RNA circNLRP12, that effectively disrupts the formation of rhabdovirus RNP complexes through two distinct mechanisms and significantly reduces their replication. NLRP12-119aa exhibits a strong affinity for the conserved 18-nucleotide sequence at the start of the leader RNA of rhabdoviruses VSV, SCRV, and RABV, outcompeting their native N protein interactions, thereby disrupting the assembly of RNP complexes and inhibiting viral replication.

View Article and Find Full Text PDF

WTAP, a conserved mA writer, can promote the antiviral immunity of Miichthysmiiuy.

Dev Comp Immunol

January 2025

Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, China. Electronic address:

N6-methyladenosine (mA) is one of the most prevalent modifications found in eukaryotic mRNA and has been implicated in the regulation of cell proliferation, development, invasion, apoptosis, and immunity. In this study, we first conducted a structural and evolutionary analysis of Wilms' tumour 1-associating protein (WTAP) in vertebrates, and the results showed that WTAP in vertebrates is conserved particularly in mammals and fish. We subsequently investigated the involvement of WTAP in the antiviral immune response of fish and discovered that the expression of Miichthys miiuy (mmiWTAP) decreased in response to stimulation with Siniperca chuatsi rhabdovirus (SCRV) and poly(I:C).

View Article and Find Full Text PDF

Development and Characterisation of an Immortal Cell Line From Largemouth Bass (Micropterus salmoides) for Viral Studies.

J Fish Dis

December 2024

Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.

Article Synopsis
  • Researchers successfully created an immortal cell line (MSF) from the fin tissue of Largemouth bass, which can be cultured continuously for over 80 passages.
  • The MSF cells, maintained at 28°C and confirmed to be free from mycoplasma contamination, are identified as epithelialoid cells with specific chromosome characteristics.
  • This new cell line is highly susceptible to various viruses affecting Largemouth bass, making it a valuable tool for future studies on gene expression and viral mechanics.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!