A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Experiments and numerical simulations on hovering three-dimensional flexible flapping wings. | LitMetric

In this paper, the applicability and accuracy of high-fidelity experimental and numerical approaches in the analysis of three-dimensional flapping (revolving and pitching) wings operating under hovering flight conditions, i.e. where unsteady and three-dimensional rotational effects are strong, are assessed. Numerical simulations are then used to explore the role of mass and frequency ratios on aerodynamic performance, wing dynamics and flow physics. It is shown that time-averaged lift increases with frequency ratio, up to a certain limit that depends on mass ratio and beyond which upward wing bending and flexibility induced phase lag between revolving an pitching motions at stroke reversal become strong and contribute to phases of negative lift that counterbalances the initial lift increase. This wing dynamics, which is dominated by spanwise bending, also affects wing-wake interactions and, in turn, leading edge vortex formation.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1748-3190/ac8f06DOI Listing

Publication Analysis

Top Keywords

numerical simulations
8
revolving pitching
8
wing dynamics
8
experiments numerical
4
simulations hovering
4
hovering three-dimensional
4
three-dimensional flexible
4
flexible flapping
4
flapping wings
4
wings paper
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!