Purpose: This study aimed to compare accuracy and efficiency of a convolutional neural network (CNN)-enhanced workflow for pancreas segmentation versus radiologists in the context of interreader reliability.
Methods: Volumetric pancreas segmentations on a data set of 294 portal venous computed tomographies were performed by 3 radiologists (R1, R2, and R3) and by a CNN. Convolutional neural network segmentations were reviewed and, if needed, corrected ("corrected CNN [c-CNN]" segmentations) by radiologists. Ground truth was obtained from radiologists' manual segmentations using simultaneous truth and performance level estimation algorithm. Interreader reliability and model's accuracy were evaluated with Dice-Sorenson coefficient (DSC) and Jaccard coefficient (JC). Equivalence was determined using a two 1-sided test. Convolutional neural network segmentations below the 25th percentile DSC were reviewed to evaluate segmentation errors. Time for manual segmentation and c-CNN was compared.
Results: Pancreas volumes from 3 sets of segmentations (manual, CNN, and c-CNN) were noninferior to simultaneous truth and performance level estimation-derived volumes [76.6 cm 3 (20.2 cm 3 ), P < 0.05]. Interreader reliability was high (mean [SD] DSC between R2-R1, 0.87 [0.04]; R3-R1, 0.90 [0.05]; R2-R3, 0.87 [0.04]). Convolutional neural network segmentations were highly accurate (DSC, 0.88 [0.05]; JC, 0.79 [0.07]) and required minimal-to-no corrections (c-CNN: DSC, 0.89 [0.04]; JC, 0.81 [0.06]; equivalence, P < 0.05). Undersegmentation (n = 47 [64%]) was common in the 73 CNN segmentations below 25th percentile DSC, but there were no major errors. Total inference time (minutes) for CNN was 1.2 (0.3). Average time (minutes) taken by radiologists for c-CNN (0.6 [0.97]) was substantially lower compared with manual segmentation (3.37 [1.47]; savings of 77.9%-87% [ P < 0.0001]).
Conclusions: Convolutional neural network-enhanced workflow provides high accuracy and efficiency for volumetric pancreas segmentation on computed tomography.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/RCT.0000000000001374 | DOI Listing |
United European Gastroenterol J
January 2025
"Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.
The rising incidence of pancreatic diseases, including acute and chronic pancreatitis and various pancreatic neoplasms, poses a significant global health challenge. Pancreatic ductal adenocarcinoma (PDAC) for example, has a high mortality rate due to late-stage diagnosis and its inaccessible location. Advances in imaging technologies, though improving diagnostic capabilities, still necessitate biopsy confirmation.
View Article and Find Full Text PDFJ Cardiovasc Magn Reson
January 2025
Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany.
Purpose: To investigate image quality and agreement of derived cardiac function parameters in a novel joint image reconstruction and segmentation approach based on disentangled representation learning, enabling real-time cardiac cine imaging during free-breathing.
Methods: A multi-tasking neural network architecture, incorporating disentangled representation learning, was trained using simulated examinations based on data from a public repository along with MR scans specifically acquired for model development. An exploratory feasibility study evaluated the method on undersampled real-time acquisitions using an in-house developed spiral bSSFP pulse sequence in eight healthy participants and five patients with intermittent atrial fibrillation.
Methods
January 2025
School of Electrical and Electronic Engineering, Hanoi University of Science and Technology, Hanoi, Viet Nam. Electronic address:
In the field of medical science, skin segmentation has gained significant importance, particularly in dermatology and skin cancer research. This domain demands high precision in distinguishing critical regions (such as lesions or moles) from healthy skin in medical images. With growing technological advancements, deep learning models have emerged as indispensable tools in addressing these challenges.
View Article and Find Full Text PDFNeuroimage
January 2025
Department of Computer Science, University of Innsbruck, Technikerstrasse 21a, Innsbruck, 6020, Austria. Electronic address:
The objective of this study is to assess the potential of a transformer-based deep learning approach applied to event-related brain potentials (ERPs) derived from electroencephalographic (EEG) data. Traditional methods involve averaging the EEG signal of multiple trials to extract valuable neural signals from the high noise content of EEG data. However, this averaging technique may conceal relevant information.
View Article and Find Full Text PDFComput Biol Med
January 2025
Department of Electrical and Electronics Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India. Electronic address:
Cardiovascular disease (CVD) is caused by the abnormal functioning of the heart which results in a high mortality rate across the globe. The accurate and early prediction of various CVDs from the electrocardiogram (ECG) is vital for the prevention of deaths caused by CVD. Artificial intelligence (AI) is used to categorize and accurately predict various CVDs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!