Combined effect of humic acid and vetiver grass on remediation of cadmium-polluted water.

Ecotoxicol Environ Saf

College of Chemistry and Life Sciences, Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu 611130, China. Electronic address:

Published: October 2022

Effective treatment of water pollution is an economic and social requirement globally. Humic acid (HA) is a popular mitigator for such waters. However, the combined effect of HA and restorative plants on cadmium (Cd) remediation is not well understood. Therefore, we experimented on Cd remediation using HA along with vetiver grass and HA-vetiver grass. We observed that vetiver grass effectively removed Cd at 15~30 mg/L. The accumulation capacity of the root was significantly higher than the shoots (P < 0.05), and Cd distribution followed the trend: cell wall > organelle > soluble substance (F1 > F2 > F3). The plant's accumulation capacity against 25 mg/L Cd was higher than for other treatments. The root accumulation capacity was much higher (702.3 mg/L) than those without added HA. However, upon adding 200 and 250 mg/L HA, the phytoremediation of Cd in the root and shoot significantly reduced (P < 0.05). Conversely, HA improved the Cd removal efficiency of the plants, notably at a lower HA concentration (150 mg/L). In addition, HA (especially at 150 mg/L) influences Cd distribution in vetiver cells (P < 0.05) and can significantly increase the proportion of Cd in the root cytoplasm. Consequently, a low HA concentration can significantly improve Cd accumulation in the vetiver, shorten the metal's bioremediation cycle, and improve the biological absorption efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2022.114026DOI Listing

Publication Analysis

Top Keywords

vetiver grass
12
accumulation capacity
12
humic acid
8
combined humic
4
acid vetiver
4
grass
4
grass remediation
4
remediation cadmium-polluted
4
cadmium-polluted water
4
water effective
4

Similar Publications

Textile wastewater poses significant risks if discharged untreated, especially due to the presence of synthetic dyes, salts, and heavy metals. As a result, constructed wetlands have emerged as a promising solution for sustainable textile wastewater management. In this context, this study evaluates a micro-scale vertical subsurface flow constructed wetland (VSSFCW) for treating textile wastewater.

View Article and Find Full Text PDF

This study evaluates the effectiveness of phytoremediation strategies in mitigating the environmental impacts of gold mine tailings through a bibliometric and systematic review. Utilizing the PRISMA methodology, 45 primary research articles were selected and analyzed, highlighting key rends and insights in phytoremediation research. The review spans over two decades of research, with a notable annual growth rate of 2.

View Article and Find Full Text PDF
Article Synopsis
  • Metal toxicity impacts plant physiology, and mycorrhizal fungi (AMF) offer a new eco-friendly method to improve soil contaminated by tannery effluents, which are high in harmful metals like chromium and cadmium.* -
  • A study was conducted using vetiver grass and three strains of AMF on contaminated soil from Tamil Nadu, revealing that AMF inoculation, particularly with R. intraradices, boosted plant growth and biomass significantly compared to other treatments.* -
  • Results indicated that R. intraradices improved the phytoextraction of metals, reduced their movement into plant shoots, and increased carbon storage in vetiver, enhancing overall carbon sequestration in contaminated soil.*
View Article and Find Full Text PDF
Article Synopsis
  • The study explored the effects of Vetiveria zizanioides oil (VET) on oxidative stress and cell death in rats that experienced seizures induced by pentylenetetrazol (PTZ).
  • Four groups of rats were observed: a control group, a PTZ only group, and two groups receiving different doses of VET alongside the PTZ treatment.
  • Findings indicated that PTZ increased seizure activity and caused oxidative stress, but treatment with VET significantly reduced these negative effects and improved the overall condition of the rats' brain tissues.
View Article and Find Full Text PDF

The role of plant uptake in total phosphorous and total nitrogen removal in vegetated bioretention cells using vetiver and cattail.

Chemosphere

September 2024

State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China. Electronic address:

Bioretention cells have emerged as a prominent strategy for mitigating pollutant loads within urban stormwater runoff. This study delves into the role of plant uptake in the simultaneous removal of nitrogen and phosphorus compounds within these systems. Three bioretention cells-CP, P1, and P2-were constructed using local soil, C33 sand, and gravel.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!