Punicalagin: a monomer with anti-Eimeria tenella effect from fruit peel of Punica granatum L.

Poult Sci

College of Animal Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China. Electronic address:

Published: October 2022

Poultry production was long plagued by coccidiosis, and the development of alternative therapies will make practical sense. In this work, 2 battery experiments were designed. In battery experiment 1, the best effect of 7 anticoccidial herbs (Sophora japonica Linn, Citrus aurantium L, leaf of Acer palmatum, bark of Magnolia officinalis, fruit peel of Punica granatum L., Eclipta prostrata L., and Piper sarmentosum Roxb.) against Eimeria tenella infection of 21-day-old male Chinese Guangxi yellow-feathered chickens were screened out by clinic indexes (bloody feces scores, cecal lesion scores, oocysts output, relative weight gain rate, and survival rate). According to the results from battery experiment 1 and other literature research, we selected 2 monomers which were extracted from fruit peel of Punica granatum L. for further battery experiment 2 which were similar with battery experiment 1. Clinic results showed that Punicalagin had better anticoccidial effect than Ellagic acid. The anticoccidial mechanism exploration results of Elisa, antioxidant test, and pathological observation showed that Punicalagin reduced the cecal inflammation, improved the expression of immunoglobulin in cecal tissue, improved cecal integrity, and restored its REDOX state. Results of 16S rRNA sequencing analysis showed that Punicalagin also maintained the fecal flora health during E. tenella infection through insignificantly increasing the proportion of Lactobacillus and Faecalibacterium as well as significantly reducing the proportion of pathogenic bacteria, Escherichia-Shigella. RNA-Seq analysis results suggested that Punicalagin may play a role in controlling E. tenella infection by interaction with cytochrome P450 family enzymes. Overall, Punicalagin has promising potential as an alternative therapy for chicken Eimeria tenella infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9449852PMC
http://dx.doi.org/10.1016/j.psj.2022.102100DOI Listing

Publication Analysis

Top Keywords

battery experiment
16
tenella infection
16
fruit peel
12
peel punica
12
punica granatum
12
eimeria tenella
8
punicalagin
6
tenella
5
battery
5
punicalagin monomer
4

Similar Publications

Ultrafast Synthesis of Oxygen Vacancy-Rich MgFeSiO Cathode to Boost Diffusion Kinetics for Rechargeable Magnesium-Ion Batteries.

Nano Lett

January 2025

National Innovation Center for Industry-Education Integration of Energy Storage Technology, College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China.

Rechargeable magnesium ion batteries (RMBs) have drawn extensive attention due to their high theoretical volumetric capacity and low safety hazards. However, divalent Mg ions suffer sluggish mobility in cathodes owing to the high charge density and slow insertion/extraction kinetics. Herein, it is shown that an ultrafast nonequilibrium high-temperature shock (HTS) method with a high heating/quenching rate can instantly introduce oxygen vacancies into the olivine-structured MgFeSiO cathode (MgFeSiO-HTS) in seconds.

View Article and Find Full Text PDF

Background: Cerebral amyloid angiopathy (CAA), characterized by the accumulation of amyloid protein in the cerebral vasculature, is highly prevalent in Alzheimer's disease (AD) patients and, on its own, increases the risk of hemorrhagic stroke, cognitive impairment, and dementia. Currently, there are no effective ways to treat or prevent CAA. Ketogenic diet (KD), characterized by high-fat, low-carbohydrate, and moderate amounts of protein consumption, has gained considerable attention in recent years for its potential therapeutic use in patients with neurodegenerative diseases, including Alzheimer's disease.

View Article and Find Full Text PDF

Halide-free ion pair organocatalyst from biobased α-hydroxy acid for cycloaddition of CO to epoxide.

Org Biomol Chem

January 2025

State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China.

The cycloaddition of CO to epoxide (CCE) reactions produce valuable cyclic carbonates useful in the electrolytes of lithium-ion batteries, as organic solvents, and in polymeric materials. However, halide-containing catalysts are predominantly used in these reactions, despite halides being notoriously corrosive to steel processing equipment and residual halides also having harmful effects. To eliminate the reliance on halides as cocatalyst in most CCE reactions, halide-free catalysts are highly desirable.

View Article and Find Full Text PDF

Colloids can be used either as model systems for directed assembly or as the necessary building blocks for making functional materials. Previous work primarily focused on assembling colloids under a single external field, where controlling particle-particle interactions is limited. This work presents results under a combination of electric and magnetic fields.

View Article and Find Full Text PDF

Electrolyte wettability significantly effects the electrochemical performance of lithium-ion batteries (LIBs). In this study, buoyancy testing is employed to accurately measure the force-time curve of electrolyte penetration into the electrodes and thereby calculate the wettability rate. Electrochemical performance is comprehensively evaluated through CR2025 coin half-cell testing, four-point probe analysis, and C-rate cycling experiments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!