Three approaches to facilitate invariant neurons and generalization to out-of-distribution orientations and illuminations.

Neural Netw

Artificial Intelligence Laboratory, Fujitsu Limited, 4-1-1 Kamikodanaka, Nakahara-Ku, Kawasaki, Kanagawa 211-8588, Japan; Center for Brains, Minds and Machines, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. Electronic address:

Published: November 2022

The training data distribution is often biased towards objects in certain orientations and illumination conditions. While humans have a remarkable capability of recognizing objects in out-of-distribution (OoD) orientations and illuminations, Deep Neural Networks (DNNs) severely suffer in this case, even when large amounts of training examples are available. Neurons that are invariant to orientations and illuminations have been proposed as a neural mechanism that could facilitate OoD generalization, but it is unclear how to encourage the emergence of such invariant neurons. In this paper, we investigate three different approaches that lead to the emergence of invariant neurons and substantially improve DNNs in recognizing objects in OoD orientations and illuminations. Namely, these approaches are (i) training much longer after convergence of the in-distribution (InD) validation accuracy, i.e., late-stopping, (ii) tuning the momentum parameter of the batch normalization layers, and (iii) enforcing invariance of the neural activity in an intermediate layer to orientation and illumination conditions. Each of these approaches substantially improves the DNN's OoD accuracy (more than 20% in some cases). We report results in four datasets: two datasets are modified from the MNIST and iLab datasets, and the other two are novel (one of 3D rendered cars and another of objects taken from various controlled orientations and illumination conditions). These datasets allow to study the effects of different amounts of bias and are challenging as DNNs perform poorly in OoD conditions. Finally, we demonstrate that even though the three approaches focus on different aspects of DNNs, they all tend to lead to the same underlying neural mechanism to enable OoD accuracy gains - individual neurons in the intermediate layers become invariant to OoD orientations and illuminations. We anticipate this study to be a basis for further improvement of deep neural networks' OoD generalization performance, which is highly demanded to achieve safe and fair AI applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2022.07.026DOI Listing

Publication Analysis

Top Keywords

orientations illuminations
20
three approaches
12
invariant neurons
12
illumination conditions
12
ood orientations
12
orientations illumination
8
recognizing objects
8
deep neural
8
neural mechanism
8
emergence invariant
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!