Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: Birth asphyxia (BA) is the most frequent cause of neonatal death as well as central nervous system (CNS) injury. BA is often associated with neonatal seizures, which only poorly respond to anti-seizure medications and may contribute to the adverse neurodevelopmental outcome. Using a non-invasive rat model of BA, we have recently reported that the potent benzodiazepine, midazolam, prevents neonatal seizures in ~50% of rat pups. In addition to its anti-seizure effect, midazolam exerts anti-inflammatory actions, which is highly relevant for therapeutic intervention following BA. The 2 major aims of the present study were to examine (1) whether midazolam reduces the adverse outcome of BA, and (2) whether this effect is different in rats that did or did not exhibit neonatal seizures after drug treatment.
Methods: Behavioral and cognitive tests were performed over 14 months after asphyxia, followed by immunohistochemical analyses.
Results: All vehicle-treated rats had seizures after asphyxia and developed behavioral and cognitive abnormalities, neuroinflammation in gray and white matter, neurodegeneration in the hippocampus and thalamus, and hippocampal mossy fiber sprouting in subsequent months. Administration of midazolam (1 mg/kg i.p.) directly after asphyxia prevented post-asphyctic seizures in ~50% of the rats and resulted in the prevention or decrease of neuroinflammation and the behavioral, cognitive, and neurodegenerative consequences of asphyxia. Except for neurodegeneration in the thalamus, seizures did not seem to contribute to the adverse outcome of asphyxia.
Interpretation: The disease-modifying effect of midazolam identified here strongly suggests that this drug provides a valuable option for improving the treatment and outcome of BA. ANN NEUROL 2023;93:226-243.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ana.26498 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!