Objective: No reported outcome measures have been established to evaluate sensor lead function in the hypoglossal nerve stimulator (HNS). This study describes the development of novel functional outcome measures for intraoperative sensor electrode function and compares 2-incision and 3-incision outcomes for HNS.

Methods: A retrospective cohort study of 100 consecutive patients who underwent HNS between June 2019 and September 2021. Demographic information, intraoperative findings, and immediate postoperative outcomes were recorded. Structured parameters were developed to compare intraoperative waveforms with six outcome measures utilized: waveform syncing, waveform amplitude, sensory current leakage, shark-fin morphology, cardiac artifact, and overall impression. Two sleep surgeons and two sleep medicine specialists compared all waveforms in a blinded fashion and assigned scores on the Likert Scale.

Results: The cohort included 50 three-incision and 50 two-incision patients. Age, gender, average body mass index, comorbidity profiles, and sleep endoscopy findings did not significantly differ between the two groups. No major complications occurred. The interclass-correlation-coefficient was greater than 0.7 for all comparisons (good to very good interrater reliability). There was no difference in waveform amplitude, cardiac artifact, sensory current leakage, or shark-fin morphology between the two groups. Waveform syncing and overall impression were statistically better in the 2-incision cohort.

Conclusions: This study is the first to define a structured method of HNS sensor electrode outcome measurement and showed consistent measures by surgeons and sleep medicine specialists. This article supports the transition to the 2-incision technique among surgeons for placement of the sensor lead. Consideration should be given to utilizing this novel tool in the clinical/research setting and validating these measures moving forward.

Level Of Evidence: 3 Laryngoscope, 133:423-430, 2023.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10087886PMC
http://dx.doi.org/10.1002/lary.30365DOI Listing

Publication Analysis

Top Keywords

sensor lead
12
outcome measures
12
hypoglossal nerve
8
nerve stimulator
8
lead function
8
sensor electrode
8
waveform syncing
8
waveform amplitude
8
sensory current
8
current leakage
8

Similar Publications

Fluoropolymer-Single Crystal Nanocomposite Based Transducer Fabrication for Bio-Imaging.

Adv Healthc Mater

January 2025

Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli, 140306, India.

Fluoropolymer alone, as an alternative to lead-based piezoelectric materials, has shown multiple challenges to develop useful sensors for solving real-world problems such as photoacoustic, ultrasound pulse echo, and other non-destructive testing. This work demonstrates the fabrication of high frequency and wide bandwidth transducers with fluoropolymer and highly polarizing cubic single crystal Barium titanate (BaTiO) ceramic composite for high resolution in-vivo photo-acoustic and ultrasound imaging. For transducer fabrication, a customized bio-compatible nanocomposite sensor film of PVDF-TrFE (Polyvinylidene fluoride trifluoroethylene)/BaTiO (BTO) is synthesized by drop and dry in heating-cum-electro-poling system for advancing polarization, crystallinity, and higher charge generation.

View Article and Find Full Text PDF

Using a single optical microfiber (OM) sensor for multi-parameter sensing can lead to significant demodulation error due to ill-conditioned matrices and nonlinear response characteristics. To address these issues, this paper proposes a novel specially packaged optical microfiber coupler combined with a silver mirror (OMCM). OMCM is combined with a mechanically enhanced sensitivity fiber Bragg grating (FBG) to form a temperature-pressure sensor.

View Article and Find Full Text PDF

The detection of lead ions (Pb) is crucial due to its harmful effects on health and the environment. In this article, what we believe to be a novel dielectric-metal hybrid structure localized surface plasmon resonance (LSPR) sensor for ultra-trace detection of Pb is proposed, featuring a zinc sulfide layer, silver nanodisks (Ag-disks), and graphene oxide (GO) covering the Ag-disks. The sensor works by detecting the variation of gold nanoparticles (AuNPs) on its surface when Pb cleaves a substrate strand linked to a DNAzyme, causing the AuNPs modified on the substrate strand to disperse.

View Article and Find Full Text PDF

Background: Heart failure (HF) is a chronic, progressive condition where the heart cannot pump enough blood to meet the body's needs. In addition to the daily challenges that HF poses, acute exacerbations can lead to costly hospitalizations and increased mortality. High health care costs and the burden of HF have led to the emerging application of new technologies to support people living with HF to stay well while living in the community.

View Article and Find Full Text PDF

The emerging field of quantum life science combines principles from quantum physics and biology to study fundamental life processes at the molecular level. Quantum mechanics, which describes the properties of small particles, can help explain how quantum phenomena such as tunnelling, superposition, and entanglement may play a role in biological systems. However, capturing these effects in living systems is a formidable challenge, as it involves dealing with dissipation and decoherence caused by the surrounding environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!