Background: Vespa velutina has become a species of concern in invaded regions of Europe and Asia, due to its impacts on biodiversity, apiculture and society. This hornet, a ferocious hunter of pollinating insects, poses a serious threat to biodiversity and pollination services. Despite ongoing efforts, its extermination in continental Europe is hampered by a lack of effective control methods, thus effective mitigation measures are primary concerns. The aims of this work were: (i) to study the effects of V. velutina predating on honey bee colonies, and (ii) to assess the effectiveness of electric harps in reducing hunting pressure and predation. We assessed the predation pressure and compared honey bee colony performance, body weight of workers, and winter survivorship for protected versus unprotected colonies in 36 experimental hives across three apiaries.
Results: Electric harps protected honey bees by reducing predation pressure and therefore mitigating foraging paralysis. Consequently, foraging activity, pollen income, brood production and worker body weight were higher in protected colonies which in turn showed greater winter survivorship than those that were unprotected, especially at sites with intermediate to high levels of predation.
Conclusion: The predation of V. velutina affects foraging activity, breeding, body weight and colony survivorship of Apis mellifera. Electric harps contribute significantly to mitigate the impact of this invasive hornet on apiaries; however, they should be deployed in tandem with additional measures to preserve honey bee colony stocks, such as facilitating access to food sources for colonies during the periods of highest predation pressure. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9825959 | PMC |
http://dx.doi.org/10.1002/ps.7132 | DOI Listing |
Pest Manag Sci
December 2022
Department of Ecology and Animal Biology, Faculty of Sciences, University of Vigo, Vigo, Spain.
ACS Appl Mater Interfaces
October 2020
Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States.
In arid yet foggy regions, fog harvesting is emerging as a promising approach to combat water scarcity. The mesh netting used by current fog harvesters suffers from inefficient drainage, which severely constrains the water collection efficiency. Recently, it was demonstrated that fog harps can significantly enhance water harvesting as the vertical wire array does not obstruct the drainage pathway.
View Article and Find Full Text PDFHealth Res Policy Syst
July 2012
Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington DC, 20375, USA.
Background: Resource-limited tropical countries are home to numerous infectious pathogens of both human and zoonotic origin. A capability for early detection to allow rapid outbreak containment and prevent spread to non-endemic regions is severely impaired by inadequate diagnostic laboratory capacity, the absence of a "cold chain" and the lack of highly trained personnel. Building up detection capacity in these countries by direct replication of the systems existing in developed countries is not a feasible approach and instead requires "leapfrogging" to the deployment of the newest diagnostic systems that do not have the infrastructure requirements of systems used in developed countries.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!