Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: To evaluate the long-term efficacy and safety of continued repeated low-level red-light (RLRL) therapy on myopia control over 2 years, and the potential rebound effect after treatment cessation.
Methods: The Chinese myopic children who originally completed the one-year randomised controlled trial were enrolled. Children continued RLRL-therapy were defined as RLRL-RLRL group, while those who stopped and switched to single-vision spectacle (SVS) in the second year were RLRL-SVS group. Likewise, those who continued to merely wear SVS or received additional RLRL-therapy were SVS-SVS and SVS-RLRL groups, respectively. RLRL-therapy was provided by an at-home desktop light device emitting red-light of 650 nm and was administered for 3 min at a time, twice a day and 5 days per week. Changes in axial length (AL) and cycloplegic spherical equivalence refraction (SER) were measured.
Results: Among the 199 children who were eligible, 138 (69.3%) children attended the examination and 114 (57.3%) were analysed (SVS-SVS: n = 41; SVS-RLRL: n = 10; RLRL-SVS: n = 52; RLRL-RLRL: n = 11). The baseline characteristics were balanced among four groups. In the second year, the mean changes in AL were 0.28 ± 0.14 mm, 0.05 ± 0.24 mm, 0.42 ± 0.20 mm and 0.12 ± 0.16 mm in SVS-SVS, SVS-RLRL, RLRL-SVS and RLRL-RLRL group, respectively (p < 0.001). The respective mean SER changes were -0.54 ± 0.39D, -0.09 ± 0.55D, -0.91 ± 0.48D, and -0.20 ± 0.56D (p < 0.001). Over the 2-year period, axial elongation and SER progression were smallest in RLRL-RLRL group (AL: 0.16 ± 0.37 mm; SER: -0.31 ± 0.79D), followed by SVS-RLRL (AL: 0.44 ± 0.37 mm; SER: -0.96 ± 0.70D), RLRL-SVS (AL: 0.50 ± 0.28 mm; SER: -1.07 ± 0.69D) and SVS-SVS group (AL: 0.64 ± 0.29 mm; SER: -1.24 ± 0.63D). No self-reported adverse events, functional or structural damages were noted.
Conclusions: Continued RLRL therapy sustained promising efficacy and safety in slowing myopia progression over 2 years. A modest rebound effect was noted after treatment cessation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10086781 | PMC |
http://dx.doi.org/10.1111/ceo.14149 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!