Bacillus cereus strain CPT56D-587-MTF (CPTF) was isolated from the highly contaminated Oak Ridge Reservation (ORR) subsurface. This site is contaminated with high levels of nitric acid and multiple heavy metals. Amplicon sequencing of the 16S rRNA genes (V4 region) in sediment from this area revealed an amplicon sequence variant (ASV) with 100% identity to the CPTF 16S rRNA sequence. Notably, this CPTF-matching ASV had the highest relative abundance in this community survey, with a median relative abundance of 3.77% and comprised 20%-40% of reads in some samples. Pangenomic analysis revealed that strain CPTF has expanded genomic content compared to other B. cereus species-largely due to plasmid acquisition and expansion of transposable elements. This suggests that these features are important for rapid adaptation to native environmental stressors. We connected genotype to phenotype in the context of the unique geochemistry of the site. These analyses revealed that certain genes (e.g. nitrate reductase, heavy metal efflux pumps) that allow this strain to successfully occupy the geochemically heterogenous microniches of its native site are characteristic of the B. cereus species while others such as acid tolerance are mobile genetic element associated and are generally unique to strain CPTF.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9805006PMC
http://dx.doi.org/10.1111/1462-2920.16173DOI Listing

Publication Analysis

Top Keywords

bacillus cereus
8
16s rrna
8
relative abundance
8
strain cptf
8
ecophysiological genomic
4
genomic analyses
4
analyses representative
4
representative isolate
4
isolate highly
4
highly abundant
4

Similar Publications

Optimized Extraction of Polyphenols from Kiwifruit Peels and Their Biological Activities.

BioTech (Basel)

December 2024

Department of Biology, Faculty of Arts and Sciences, University of Balamand, P.O. Box 100, Tripoli 1300, Lebanon.

(1) Background: Kiwifruit is a globally valued fruit. Its industrial processing produces a substantial amount of waste, particularly peels, which present an appealing potential source of bioactive compounds. This study focuses on optimizing the extraction of phenolics from kiwi peels using a water bath (WB) and infrared irradiation (IR) and assessing their biological activities.

View Article and Find Full Text PDF

Antibiotic-resistant bacteria aerosol in a Caribbean coastal city: Pre- and post- COVID-19 lockdown.

Sci Total Environ

December 2024

Department of Civil and Environmental Engineering, Universidad del Norte, Barranquilla, Colombia. Electronic address:

This study assessed the prevalence and spatial distribution of viable ultrafine and fine antibiotic-resistant bacteria aerosols (ARB) in the Metropolitan Area of Barranquilla, Colombia, pre- and post-lockdown (September 2019 to December 2020). Samples were systematically collected from urban, suburban, and rural sites using a six-stage viable cascade impactor. We employed logistic regression and Bayesian Neural Network Classifiers to analyze meteorological variables' influence on antibiotic resistance persistence.

View Article and Find Full Text PDF

Maize ( L.), a key staple crop in Sub-Saharan Africa, is particularly vulnerable to concurrent drought and heat stress, which threatens crop yield and food security. Plant growth-promoting rhizobacteria (PGPR) have shown potential as biofertilizers to enhance plant resilience under such abiotic stresses.

View Article and Find Full Text PDF

The present study introduces a minimalistic and cost-effective approach to synthesising Gold nanoparticles (AuNPs) using aqueous leaf extracts of Andrographis paniculata. In this synthesis, bioactive metabolites in the leaf extract act as reducing agents, converting Au³⁺ ions to metallic Au⁰, while proteins in the extract form a stabilising layer around the nanoparticles to prevent agglomeration and maintain particle size stability. The synthesised AuNPs were systematically characterised using a range of analytical techniques.

View Article and Find Full Text PDF

Bacillus cereus biovar anthracis (Bcbva) causes anthrax-like disease in animals, particularly in the non-human primates and great apes of West and Central Africa. Genomic analyses revealed Bcbva as a member of the B. cereus species that carries two plasmids, pBCXO1 and pBCXO2, which have high sequence homology to the B.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!