Cutaneous melanoma is a skin tumor with a high degree of malignancy and fatality rate, the incidence of which has increased in recent years. Therefore, a rapid and sensitive diagnostic technique of melanoma cells is urgently needed. In this paper, we present a new approach using fiber optical tweezers to manipulate melanoma cells to measure their Raman spectra. Then, combined with Principal Component Analysis and Support Vector Machines (PCA-SVM) classification model, to achieve the classification of common mutant, wild-type and drug-resistant melanoma cells. A total of 150 Raman spectra of 30 cells were collected from mutant, wild-type and drug-resistant melanoma cell lines, and the classification accuracy was 92%, 94%, 97.5%, respectively. These results suggest that the study of tumor cells based on fiber optical tweezers and Raman spectroscopy is a promising method for early and rapid identification and diagnosis of tumor cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbio.202200158 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!