Background: Digital anthropomorphic phantoms, such as the 4D extended cardiac-torso (XCAT) phantom, are actively used to develop, optimize, and evaluate a variety of imaging applications, allowing for realistic patient modeling and knowledge of ground truth. The XCAT phantom defines the activity and attenuation for a simulated patient, which includes a complete set of organs, muscle, bone, and soft tissue, while also accounting for cardiac and respiratory motion. However, the XCAT phantom does not currently include the lymphatic system, critical for evaluating medical imaging tasks such as sentinel node detection, node density measurement, and radiation dosimetry.

Purpose: In this study, we aimed to develop a scalable lymphatic system in the XCAT phantom, to facilitate improved research of the lymphatic system in medical imaging. Using this scalable lymphatic system, we modeled the lymph node conglomerate pathology that is characteristically observed in primary mediastinal B-cell lymphoma (PMBCL). As an extended application, we evaluated positron emission tomography (PET) image quantification of metabolic tumor volume (MTV) and total lesion glycolysis (TLG) of these simulated lymphomas, though the phantoms may be applied to other imaging modalities and study design paradigms (e.g., image quality, detection).

Methods: A template model for the lymphatic system was developed based on anatomical data from the Visible Human Project of the National Library of Medicine. The segmented nodes and vessels were fit with non-uniform rational basis spline surfaces, and multichannel large deformation diffeomorphic metric mapping was used to propagate the template to different XCAT anatomies. To model conglomerates observed in PMBCL, lymph nodes were enlarged, converged within the mediastinum, and tracer concentration was increased. We used the phantoms as inputs to a PET simulation tool, which generated images using ordered subsets expectation maximization reconstruction with 2-8 mm Gaussian filters. Fixed thresholding (FT) and gradient segmentation were used to determine MTV and TLG. Percent bias (%Bias) and coefficient of variation (COV) were computed as measures of accuracy and precision, respectively, for each MTV and TLG measurement.

Results: Using the methodology described above, we introduced a scalable lymphatic system in the XCAT phantom, which allows for the radioactivity and attenuation ground truth to be generated in 116 ± 2.5 s using a 2.3 GHz processor. Within the Rhinoceros interface, lymph node anatomy and function were modified to create a cohort of 10 phantoms with lymph node conglomerates. Using the lymphoma phantoms to evaluate PET quantification of MTV, mean %Bias values were -9.3%, -41.3%, and 20.9%, while COV values were 4.08%, 7.6%, and 3.4% using 25% FT, 40% FT, and gradient segmentations, respectively. Comparatively for TLG, mean %Bias values were -27.4%, -45.8%, and -16.0%, while COV values were 1.9%, 5.7%, and 1.4%, for the 25% FT, 40% FT, and gradient segmentations, respectively.

Conclusions: In this work, we upgraded the XCAT phantom to include a lymphatic system, comprised of a network of 276 scalable lymph nodes and corresponding vessels. As an application, we created a cohort of phantoms with lymph node conglomerates to evaluate lymphoma quantification in PET imaging, which highlights an important application of this work.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9742182PMC
http://dx.doi.org/10.1002/mp.15963DOI Listing

Publication Analysis

Top Keywords

lymphatic system
32
xcat phantom
28
scalable lymphatic
16
lymph node
16
system xcat
12
lymphatic
8
system
8
xcat
8
ground truth
8
include lymphatic
8

Similar Publications

Lymphedema, a severe and complex inflammatory disease caused by lymphatic system insufficiency and impeded lymphatic drainage that causes an enormous physical and psychological burden on patients and may even lead to death, has long been a challenging issue in the medical field. Clinically, conventional approaches including surgical treatment and conservative treatment have been employed for lymphedema therapy, but their curative effect is still unsatisfactory because of high operational difficulty, high cost, and long-term reliance. In this study, a novel kind of piezoelectric microneedle driven by ultrasound (US) is proposed to regulate macrophage polarization and remodel the pathological inflammatory microenvironment in a noninvasive manner, thereby promoting lymphatic regeneration and improving lymphedema.

View Article and Find Full Text PDF

Background: Angioimmunoblastic T-cell lymphoma (AITL) is a distinct subtype of peripheral T-cell lymphoma (PTCL) and accounts for 2% of all non-Hodgkin lymphomas. Its typical characteristics include an aggressive course, progressive lymphadenopathy, hepatosplenomegaly, systemic symptoms, anemia, hypergammaglobulinemia, and generally poor prognosis.

Methods: We describe a rare case in which the left inguinal lymph node was completely excised and biopsied one year ago.

View Article and Find Full Text PDF

Tissue-Engineered Therapeutics for Lymphatic Regeneration: Solutions for Myocardial Infarction and Secondary Lymphedema.

Adv Healthc Mater

January 2025

Department of Biomedical Engineering, College of Engineering, Texas A&M University, 5045 Emerging Technologies Building 3120 TAMU, College Station, TX, 77843-3120, USA.

The lymphatic system, which regulates inflammation and fluid homeostasis, is damaged in various diseases including myocardial infarction (MI) and breast-cancer-related lymphedema (BCRL). Mounting evidence suggests that restoring tissue fluid drainage and clearing excess immune cells by regenerating damaged lymphatic vessels can aid in cardiac repair and lymphedema amelioration. Current treatments primarily address symptoms rather than underlying causes due to a lack of regenerative therapies, highlighting the importance of the lymphatic system as a promising novel therapeutic target.

View Article and Find Full Text PDF

Objectives: This study investigated the prognostic role of log odds of negative lymph node/T stage (LONT) and established a nomogram based on LONT to predict the prognosis in colorectal cancer (CRC) patients.

Design: A retrospective cohort study.

Setting And Participants: We enrolled 80 518 CRC patients from the Surveillance, Epidemiology and End Results database between 2010 and 2015.

View Article and Find Full Text PDF

High-risk habitat radiomics model based on ultrasound images for predicting lateral neck lymph node metastasis in differentiated thyroid cancer.

BMC Med Imaging

January 2025

Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, No. 158 Shang tang Road, Hangzhou, Zhejiang, 310011, China.

Background: This study aims to evaluate the predictive usefulness of a habitat radiomics model based on ultrasound images for anticipating lateral neck lymph node metastasis (LLNM) in differentiated thyroid cancer (DTC), and for pinpointing high-risk habitat regions and significant radiomics traits.

Methods: A group of 214 patients diagnosed with differentiated thyroid carcinoma (DTC) between August 2021 and August 2023 were included, consisting of 107 patients with confirmed postoperative lateral lymph node metastasis (LLNM) and 107 patients without metastasis or lateral cervical lymph node involvement. An additional cohort of 43 patients was recruited to serve as an independent external testing group for this study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!