ALPK1 Accelerates the Pathogenesis of Osteoarthritis by Activating NLRP3 Signaling.

J Bone Miner Res

The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.

Published: October 2022

Alpha-kinase 1 (ALPK1), a member of the alpha-kinase family, has been shown to be involved in mediating inflammatory responses and is strongly associated with gout; however, its modulatory role in osteoarthritis (OA) remains unclear. Here, we uncovered elevation of ALPK1 in degraded cartilage of destabilized medial meniscus (DMM) and collagenase-induced osteoarthritis (CIOA), two different mouse OA models induced by mechanical stress or synovitis. Intraarticular administration of recombinant human ALPK1 (rhALPK1) in vivo exacerbated OA pathogenesis in both DMM and CIOA mice, whereas ALPK1 knockout reversed this process. In vitro study demonstrated that ALPK1 aggravates metabolic disturbances in chondrocytes by enhancing the production of NOD-like receptor protein 3 (NLRP3), an inflammasome sensors driving interlukin-1β (IL-1β)-mediated inflammatory conditions. Furthermore, the selective inhibition of nuclear factor-κB (NF-κB) or NLRP3 indicates that NLRP3 is a downstream signaling governed by NF-κB in ALPK1-activated chondrocytes. Collectively, these results establish ALPK1 as a novel catabolic regulator of OA pathogenesis, and targeting this signaling may be a promising treatment strategy for OA. © 2022 American Society for Bone and Mineral Research (ASBMR).

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbmr.4669DOI Listing

Publication Analysis

Top Keywords

alpk1
7
alpk1 accelerates
4
accelerates pathogenesis
4
pathogenesis osteoarthritis
4
osteoarthritis activating
4
nlrp3
4
activating nlrp3
4
nlrp3 signaling
4
signaling alpha-kinase
4
alpha-kinase alpk1
4

Similar Publications

Jiawei Ermiao Granules (JWEMGs) clear persistent HR-HPV infection though improving vaginal microecology.

J Ethnopharmacol

January 2025

Jiangsu Clinical Medicine Innovation Center for Obstetrics and Reproduction, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Department of Gynecology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China. Electronic address:

Ethnopharmacological Relevance: Jiawei Ermiao Granules (JWEMGs), a traditional Chinese herbal formulation, has been widely used in China for the treatment of human papillomavirus (HPV) infections. However, the underlying mechanisms through which it exerts its antiviral effects remain poorly understood.

Aim Of The Study: This study aimed to investigate the potential mechanisms by which JWEMGs modulate vaginal microecology and clear HPV infections, utilizing clinical trials, metagenomic sequencing, and in vitro models.

View Article and Find Full Text PDF

Retinal dystrophy, optic nerve oedema, splenomegaly, anhidrosis and migraine headache (ROSAH) syndrome is an autosomal dominant disorder and to date is known to be caused by either the Thr237Met or Tyr254Cys variant in the protein kinase ALPK1. Here, we identify a family in which ROSAH syndrome is caused by a novel variant in which Ser277 is changed to Phe. All six patients examined display ocular inflammation and optic nerve elevation, four have retinal degeneration and four are registered blind.

View Article and Find Full Text PDF

Measurement of the Activity of Wildtype and Disease-Causing ALPK1 Mutants in Transfected Cells With a 96-Well Format NF-κB/AP-1 Reporter Assay.

Bio Protoc

November 2024

MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Scotland, UK.

Article Synopsis
  • Alpha-protein kinase 1 (ALPK1) plays a crucial role in the immune response by being activated by bacterial components, but certain mutations can cause it to activate in the absence of these triggers, leading to diseases like ROSAH syndrome.
  • A new semi-quantitative reporter assay has been developed to study both normal and mutant forms of ALPK1 using specially designed HEK-Blue cells, which can indicate ALPK1 activity by measuring alkaline phosphatase levels produced upon ALPK1 activation.
  • This assay is highly sensitive, optimized for 96-well plates, quick to perform (only four days), and useful for screening ALPK1 variants, making it ideal for research on gene variants with unclear effects.
View Article and Find Full Text PDF

ALPK1 is an atypical protein kinase that is activated during bacterial infection by ADP-heptose and phosphorylates TIFA to activate a cell signaling pathway. In contrast, specific mutations in ALPK1 allow it to also be activated by endogenous human nucleotide sugars such as UDP-mannose, leading to the phosphorylation of TIFA in the absence of infection. This protocol describes a quantitative, cell-free phosphorylation assay that can directly measure the catalytic activity of wildtype and disease-causing ALPK1 in the presence of different nucleotide sugars.

View Article and Find Full Text PDF

Diseases caused by altered specificity of a protein kinase for its allosteric activators.

Trends Biochem Sci

January 2025

MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, Scotland, UK. Electronic address:

Protein kinases regulate many intracellular processes, and their dysregulation causes cancers and other diseases. This review focuses on the atypical alpha-kinase 1 (ALPK1), which is activated in mammalian cells by nucleoside diphosphate heptoses (ADP-heptose, UDP-heptose, and CDP-heptose) produced by microbial pathogens but not by mammalian cells. Mutations in human ALPK1 cause ROSAH syndrome and spiradenoma, which result from an alteration in its specificity for nucleoside diphosphate heptoses, causing aberrant activation by mammalian nucleoside diphosphate sugars without microbial infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!