A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ion-Induced Surface Charge Dynamics in Freestanding Monolayers of Graphene and MoS_{2} Probed by the Emission of Electrons. | LitMetric

AI Article Synopsis

  • - The study compares electron emission from graphene and MoS₂, revealing that graphene emits six times more electrons despite both having similar work functions.
  • - A single-band Hubbard model explains that charge-up in MoS₂ hinders low-energy electron escape shortly after ion impact.
  • - Measurements show that most emitted electrons have energies below 10 eV, making them vulnerable to dynamic charge-up effects at surfaces.

Article Abstract

We compare the ion-induced electron emission from freestanding monolayers of graphene and MoS_{2} to find a sixfold higher number of emitted electrons for graphene even though both materials have similar work functions. An effective single-band Hubbard model explains this finding by a charge-up in MoS_{2} that prevents low energy electrons from escaping the surface within a period of a few femtoseconds after ion impact. We support these results by measuring the electron energy distribution for correlated pairs of electrons and transmitted ions. The majority of emitted primary electrons have an energy below 10 eV and are therefore subject to the dynamic charge-up effects at surfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.129.086802DOI Listing

Publication Analysis

Top Keywords

freestanding monolayers
8
monolayers graphene
8
graphene mos_{2}
8
electrons
5
ion-induced surface
4
surface charge
4
charge dynamics
4
dynamics freestanding
4
mos_{2} probed
4
probed emission
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!