Quantum trajectories are crucial to understanding the evolution of open systems. We consider an open cavity mode undergoing up and down multistate quantum jumps due to the emission and absorption of photons. We prove that among all subtrajectories, starting simultaneously from different photon number states, only one survives a long single-run evolution. A random Fock state terminating the subtrajectory becomes known for the ergodic case via the key-the processed record of the input and output photocounts, and the trajectory duration. Based on this result, we propose a robust protocol to infer the Fock state, a valuable resource for quantum applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.129.083603 | DOI Listing |
J Comput Chem
January 2025
Scuola Superiore Meridionale, Napoli, Italy.
Light-driven molecular rotary motors are nanometric machines able to convert light into unidirectional motions. Several types of molecular motors have been developed to better respond to light stimuli, opening new avenues for developing smart materials ranging from nanomedicine to robotics. They have great importance in the scientific research across various disciplines, but a detailed comprehension of the underlying ultrafast photophysics immediately after photo-excitation, that is, Franck-Condon region characterization, is not fully achieved yet.
View Article and Find Full Text PDFJ Chem Phys
January 2025
State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China.
Vibro-polaritons are hybrid light-matter states that arise from the strong coupling between the molecular vibrational transitions and the photons in an optical cavity. Developing theoretical and computational methods to describe and predict the unique properties of vibro-polaritons is of great significance for guiding the design of new materials and experiments. Here, we present the ab initio cavity Born-Oppenheimer density functional theory (CBO-DFT) and formulate the analytic energy gradient and Hessian as well as the nuclear and photonic derivatives of dipole and polarizability within the framework of CBO-DFT to efficiently calculate the harmonic vibrational frequencies, infrared absorption, and Raman scattering spectra of vibro-polaritons as well as to explore the critical points on the cavity potential energy surface.
View Article and Find Full Text PDFACS Omega
December 2024
Faculty of Health Science, University of Ss. Cyril and Methodius, 91701 Trnava, Slovakia.
J Chem Theory Comput
January 2025
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.
Exact exchange contributions included in density functional theory calculations have rendered excellent electronic structure results on both cold and extremely hot matter. In this work, we develop a mixed deterministic-stochastic resolution-of-the-identity compressed exchange (mRICE) method for efficient calculation of exact and hybrid electron exchange, suitable for applications alongside mixed stochastic-deterministic density functional theory. mRICE offers accurate calculations of the electronic structure at a largely reduced computation time compared to other compression algorithms, such as Lin's adaptive compressed exchange, for the warm dense matter.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
HUN-REN Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest, Hungary.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!