Human monocytotropic ehrlichiosis is an emerging tick-borne infection caused by the obligate intracellular pathogen, Ehrlichia chaffeensis. The non-specific symptoms can range from a self-limiting fever to a fatal septic-like syndrome and may be misdiagnosed. The limited treatment choices including doxycycline are effective only in the initiation phase of the infection. It seems that novel therapeutic targets and new vaccine strategies could be effective to control this pathogen. This study is comprised of two major phases. First, the common proteins retrieved through subtractive analysis and potential drug targets were evaluated by subcellular localization, homology prediction, metabolic pathways, druggability, essentiality, protein-protein interaction networks, and protein data bank availability. In the second phase, surface-exposed proteins were assessed based on antigenicity, allergenicity, physiochemical properties, B cell and T cell epitopes, conserved domains, and protein-protein interaction networks. A multi-epitope vaccine was designed and characterized using molecular dockings and immune simulation analysis. Six proteins including WP_011452818.1, WP_011452723.1, WP_006010413.1, WP_006010278.1, WP_011452938.1, and WP_006010644.1 were detected. They belong to unique metabolic pathways of E. chaffeensis that are considered as new essential drug targets. Based on the reverse vaccinology, WP_011452702.1, WP_044193405.1, WP_044170604.1, and WP_006010191.1 proteins were potential vaccine candidates. Finally, four B cell epitopes, including SINNQDRNC, FESVSSYNI, SGKKEISVQSN, and QSSAKRKST, were used to generate the multi-epitope vaccine based on LCL platform. The vaccine showed strong interactions with toll-like receptors and acceptable immune-reactivity by immune simulation analysis. The findings of this study may represent a turning point in developing an effective drug and vaccine against E. chaffeensis. However, further experimental analyses have remained.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9437403 | PMC |
http://dx.doi.org/10.1007/s12010-022-04116-y | DOI Listing |
Adv Sci (Weinh)
January 2025
National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
To bolster the capacity for managing potential infectious diseases in the future, it is critical to develop specific antiviral drugs that can be rapidly designed and delivered precisely. Herein, a CRISPR/Cas13d system for broad-spectrum targeting of influenza A virus (IAV) from human, avian, and swine sources is designed, incorporating Cas13d mRNA and a tandem CRISPR RNA (crRNA) specific for the highly conserved regions of viral polymerase acidic (PA), nucleoprotein (NP), and matrix (M) gene segments, respectively. Given that the virus targets cells with specific receptors but is not limited to a single organ, a Susceptible Cell Selective Delivery (SCSD) system is developed by modifying a lipid nanoparticle with a peptide mimicking the function of the hemagglutinin of influenza virus to target sialic acid receptors.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Department of Traditional Chinese Medicine, Shanghai Fourth People's Hospital Affiliated to Tongji University of Medicine, Shanghai, China.
Based on network pharmacology and molecular docking methods, this study explored its active compounds and confirmed its potential mechanism of action against Hand-foot skin reaction induced by tumor-targeted drugs. Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform and UniProt Database were used to obtain the active ingredients and target proteins of Spatholobi Caulis. All hand-foot skin reaction (HFSR)-related targets were obtained with the help of the Human Gene Database, Online Mendelian Inheritance in Humans (OMIM), DisGeNET and DrugBank databases.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China.
Background: This study evaluates the efficacy and safety of sitagliptin versus gliclazide, combined with metformin, in treatment-naive patients with type 2 diabetes mellitus (T2DM) and glucotoxicity.
Methods: In this single-center, randomized, controlled noninferiority trial, 129 treatment-naive patients with T2DM with glucotoxicity (fasting plasma glucose [FPG] ≥ 200 mg/dL and glycated hemoglobin ≥ 9.0%) were randomized to receive sitagliptin plus metformin (n = 66) or gliclazide plus metformin (n = 63) for 12 weeks.
Cell Rep
January 2025
Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA. Electronic address:
The membrane-proximal external region (MPER) of the HIV-1 envelope is a target for broadly neutralizing antibodies (bnAbs), and vaccine-elicited MPER-directed antibodies have recently been reported from a human clinical trial. In this study, we sought to identify MPER-directed nAbs in simian immunodeficiency virus (SIV)-infected rhesus macaques. We isolated four lineages of SIV MPER-directed nAbs from two SIV-infected macaques.
View Article and Find Full Text PDFAm J Ther
January 2025
Faculty of Medicine, Transilvania University of Brasov, Brasov, Romania.
Background: The management of bipolar disorder during pregnancy presents a significant challenge, particularly regarding the safety and effectiveness of long-acting injectable (LAI) antipsychotics like aripiprazole. Despite the growing use of LAI antipsychotics in psychiatric disorders, data on their use during pregnancy are limited, especially for bipolar disorder. This study aimed to shed light on this issue through a scoping review.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!