Scope: Ready-to-feed liquid infant formula is increasingly used for preterm infants when human milk is unavailable. These formulas are sterilized by ultra-high temperature treatment, but heating and storage may reduce bioactivity and increase formation of Maillard reaction products with potential negative consequences for immature newborns.
Methods And Results: Using preterm pigs as a model for sensitive newborn infants, the study tests the intestinal responses of feeding experimental liquid formula within 5 days. A pasteurized formula (PAST) with the same nutrient composition but less protein modifications serves as control to ultra-high temperature-treated formula without (UHT) and with prolonged storage (SUHT). Relative to PAST, UHT contains lower levels of lactoferrin and IgG. Additional storage (40 °C, 60 days, SUHT) reduces antimicrobial capacity and increases non-reducible protein aggregates and Maillard reaction products (up to 13-fold). Pigs fed SUHT have more diarrhea and show signs of intestinal inflammation (necrotizing enterocolitis) compared with pigs fed PAST and UHT. These clinical effects are accompanied by accumulation of Maillard reaction products, protein cross-links, and inflammatory responses in the gut.
Conclusion: The results demonstrate that feeding UHT infant formulas, particularly after prolonged storage, adversely affects gut maturation and function in preterm pigs used as a model of preterm infants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9786312 | PMC |
http://dx.doi.org/10.1002/mnfr.202200132 | DOI Listing |
J Dev Orig Health Dis
January 2025
School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia.
Preterm birth exposes the neonate to hypoxic-ischaemic and excitotoxic insults that impair neurodevelopment and are magnified by the premature loss of placentally supplied, inhibitory neurosteroids. The cerebellum is a neuronally dense brain region, which undergoes critical periods of development during late gestation, when preterm births frequently occur. We propose that neurosteroid replacement therapy using tiagabine and zuranolone will protect the cerebellum against preterm-associated insults.
View Article and Find Full Text PDFTransl Psychiatry
November 2024
Department of Physiology, University of Toronto, Toronto, ON, Canada.
Antenatal corticosteroids (ACS) are administered where there is risk of preterm birth to promote fetal lung development and improve perinatal survival. However, treatment may be associated with increased risk of developing neurobehavioural disorders. We have recently identified that ACS results in significant changes to DNA methylation patterns in the newborn and juvenile prefrontal cortex (PFC) of exposed guinea pig offspring.
View Article and Find Full Text PDFInt J Mol Sci
October 2024
Laboratory of Iron Molecular Biology, Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland.
Physiol Rep
October 2024
Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand.
Dev Psychobiol
November 2024
School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia.
The postnatal environment is challenging for the preterm neonate with exposure to hypoxic and excitotoxic events, amplified by premature loss of placentally derived neurosteroids. Between preterm birth and term equivalent age (TEA), cerebellar development continues despite these challenges. We hypothesize that neurosteroid replacement therapy during this time will support optimal cerebellar development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!